Engineering of nonclassical motional states in optomechanical systems

We propose to synthesize arbitrary nonclassical motional states in optomechanical systems by using sideband excitations and photon blockade. We first demonstrate that the Hamiltonian of the optomechanical systems can be reduced, in the strong single-photon optomechanical coupling regime when the photon blockade occurs, to one describing the interaction between a driven two-level trapped ion and the vibrating modes, and then show a method to generate target states by using a series of classical pulses with desired frequencies, phases, and durations. We further analyze the effect of the photon leakage, due to small anharmonicity, on the fidelity of the expected motional state, and study environment induced decoherence. Moreover, we also discuss the experimental feasibility and provide operational parameters using the possible experimental data.

[1]  Yanbei Chen,et al.  Preparing a mechanical oscillator in non-gaussian quantum states. , 2010, Physical review letters.

[2]  P. Rabl,et al.  Photon blockade effect in optomechanical systems. , 2011, Physical review letters.

[3]  J. Teufel,et al.  Sideband cooling of micromechanical motion to the quantum ground state , 2011, Nature.

[4]  J. Teufel,et al.  Circuit cavity electromechanics in the strong-coupling regime , 2010, Nature.

[5]  B. He Quantum optomechanics beyond linearization , 2012, 1203.1977.

[6]  M. Aspelmeyer,et al.  Quantum state orthogonalization and a toolset for quantum optomechanical phonon control. , 2012, Physical review letters.

[7]  C. K. Law,et al.  PREPARATION OF ARBITRARY ENTANGLED QUANTUM STATES OF A TRAPPED ION , 1998 .

[8]  Christoph Simon,et al.  Optomechanical superpositions via nested interferometry. , 2012, Physical review letters.

[9]  Christoph Simon,et al.  Towards quantum superpositions of a mirror , 2004 .

[10]  M. Blencowe,et al.  Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box. , 2002, Physical review letters.

[11]  Franco Nori,et al.  Cavity optomechanical coupling assisted by an atomic gas , 2008, 0803.0776.

[12]  M. Aspelmeyer,et al.  Laser cooling of a nanomechanical oscillator into its quantum ground state , 2011, Nature.

[13]  Erik Lucero,et al.  Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.

[14]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[15]  Erik Lucero,et al.  Synthesizing arbitrary quantum states in a superconducting resonator , 2009, Nature.

[16]  Yu-xi Liu,et al.  Entangled-state engineering of vibrational modes in a multimembrane optomechanical system , 2013, 1303.0077.

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  Erik Lucero,et al.  Generation of Fock states in a superconducting quantum circuit , 2008, Nature.

[19]  K. Vahala,et al.  Optomechanical crystals , 2009, Nature.

[20]  C. K. Law,et al.  Spectrum of single-photon emission and scattering in cavity optomechanics , 2012, 1201.1696.

[21]  Florian Marquardt,et al.  Quantum theory of cavity-assisted sideband cooling of mechanical motion. , 2007, Physical review letters.

[22]  King,et al.  Generation of nonclassical motional states of a trapped atom. , 1996, Physical review letters.

[23]  NONCLASSICAL STATES AND MEASUREMENT OF GENERAL MOTIONAL OBSERVABLES OF A TRAPPED ION , 1997 .

[24]  J. Sankey,et al.  Strong and tunable nonlinear optomechanical coupling in a low-loss system , 2010, 1002.4158.

[25]  S. Girvin,et al.  Single-photon optomechanics. , 2011, Physical review letters.

[26]  T J Kippenberg,et al.  Theory of ground state cooling of a mechanical oscillator using dynamical backaction. , 2007, Physical review letters.

[27]  K. Vahala,et al.  A picogram- and nanometre-scale photonic-crystal optomechanical cavity , 2008, Nature.

[28]  Franco Nori,et al.  Photon blockade in quadratically coupled optomechanical systems , 2013, 1308.6360.

[29]  Michal Lipson,et al.  Broadband tuning of optomechanical cavities. , 2010, Optics express.

[30]  Markus Aspelmeyer,et al.  Quantum optomechanics—throwing a glance [Invited] , 2010, 1005.5518.

[31]  F. Nori,et al.  Generation of nonclassical photon states using a superconducting qubit in a microcavity , 2004, quant-ph/0402189.

[32]  D. Stamper-Kurn,et al.  Cavity nonlinear optics at low photon numbers from collective atomic motion. , 2007, Physical review letters.

[33]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[34]  Law,et al.  Arbitrary control of a quantum electromagnetic field. , 1996, Physical review letters.

[35]  F. Nori,et al.  Engineering quantum pure states of a trapped cold ion beyond the Lamb-Dicke limit , 2003, quant-ph/0308079.

[36]  R Kaltenbaek,et al.  Large quantum superpositions and interference of massive nanometer-sized objects. , 2011, Physical review letters.

[37]  S. Girvin,et al.  Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane , 2007, Nature.

[38]  S. Deléglise,et al.  Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode , 2011, Nature.

[39]  T. Kippenberg,et al.  Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit , 2009 .

[40]  Hailin Wang,et al.  Resolved-sideband and cryogenic cooling of an optomechanical resonator , 2009 .

[41]  T. Kippenberg,et al.  Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.

[42]  Holger Schmidt,et al.  Strongly Interacting Photons in a Nonlinear Cavity , 1997 .

[43]  H. V. D. Zant,et al.  Mechanical systems in the quantum regime , 2011, 1106.2060.

[44]  M. Aspelmeyer,et al.  Observation of strong coupling between a micromechanical resonator and an optical cavity field , 2009, Nature.

[45]  M. Amin Rabi oscillations in systems with small anharmonicity , 2004, cond-mat/0407080.

[46]  Markus Aspelmeyer,et al.  Laser noise in cavity-optomechanical cooling and thermometry , 2012, 1210.2671.

[47]  King,et al.  Experimental Determination of the Motional Quantum State of a Trapped Atom. , 1996, Physical review letters.

[48]  F. Brennecke,et al.  Cavity Optomechanics with a Bose-Einstein Condensate , 2008, Science.

[49]  H. Carmichael An open systems approach to quantum optics , 1993 .

[50]  O. Arcizet,et al.  Resolved Sideband Cooling of a Micromechanical Oscillator , 2007, 0709.4036.

[51]  H. Risken,et al.  Quantum Collapses and Revivals in a Quantized Trap , 1992 .