Hot Jupiter Variability in Eclipse Depth

Physical conditions in the atmospheres of tidally locked, slowly rotating hot Jupiters correspond to dynamical circulation regimes with Rhines scales and Rossby deformation radii comparable to the planetary radii. Consequently, the large spatial scales of moving atmospheric structures could generate significant photospheric variability. Here we estimate the level of thermal infrared variability expected in successive secondary eclipse depths, according to hot Jupiter turbulent "shallow-layer" models. The variability, at the few percent level or more in models with strong enough winds, is within the reach of Spitzer measurements. Eclipse depth variability is thus a valuable tool to constrain the circulation regime and global wind speeds in hot Jupiter atmospheres.

[1]  Sara Seager,et al.  “Weather” Variability of Close-in Extrasolar Giant Planets , 2002, astro-ph/0210499.

[2]  Sara Seager,et al.  The Changing Face of the Extrasolar Giant Planet HD 209458b , 2002, astro-ph/0209227.

[3]  Drake Deming,et al.  Accepted for publication in the Astrophysical Journal Strong Infrared Emission from the Extrasolar Planet HD189733b , 2006 .

[4]  I. Hubeny,et al.  Theory for the Secondary Eclipse Fluxes, Spectra, Atmospheres, and Light Curves of Transiting Extrasolar Giant Planets , 2006, astro-ph/0607014.

[5]  T. Guillot,et al.  Giant Planets at Small Orbital Distances , 1995, astro-ph/9511109.

[6]  Curtis S. Cooper,et al.  Dynamic Meteorology at the Photosphere of HD 209458b , 2005, astro-ph/0502476.

[7]  M. Livio,et al.  Resonant Tides in Close Orbiting Planets , 1997 .

[8]  Tidal decay of close planetary orbits , 1996, astro-ph/9605059.

[9]  A. P. Showman,et al.  The Influence of Atmospheric Dynamics on the Infrared Spectra and Light Curves of Hot Jupiters , 2006 .

[10]  G. Starkman,et al.  Axiorecombination: A New Mechanism for Stellar Axion Production , 1986 .

[11]  D. N. C. Lin,et al.  Tidal Dissipation in Rotating Giant Planets , 2004 .

[12]  I. Hubeny,et al.  A theoretical interpretation of the measurements of the secondary eclipses of tres-1 and HD 209458b , 2005 .

[13]  A time-dependent radiative model of HD 209458b , 2004, astro-ph/0409468.

[14]  David Charbonneau,et al.  Detection of Thermal Emission from an Extrasolar Planet , 2005 .

[15]  L. Polvani,et al.  The Morphogenesis of Bands and Zonal Winds in the Atmospheres on the Giant Outer Planets , 1996, Science.

[16]  L. J. Richardson,et al.  On the Dayside Thermal Emission of Hot Jupiters , 2005 .

[17]  C. G. Tinney,et al.  Catalog of nearby exoplanets , 2006 .

[18]  Peter H. Hauschildt,et al.  Phase-dependent Properties of Extrasolar Planet Atmospheres , 2005 .

[19]  Drake Deming,et al.  The Phase-Dependent Infrared Brightness of the Extrasolar Planet ʊ Andromedae b , 2006, Science.

[20]  Comparative Planetary Atmospheres: Models of TrES-1 and HD 209458b , 2005, astro-ph/0505359.

[21]  Tristan Guillot,et al.  Atmospheric circulation and tides of ``51 Pegasus b-like'' planets , 2002 .

[22]  Drake Deming,et al.  Infrared radiation from an extrasolar planet , 2005, Nature.

[23]  L. Polvani,et al.  The emergence of jets and vortices in freely evolving, shallow-water turbulence on a sphere , 1996 .