Condensin, master organizer of the genome

[1]  Ahmed E. Fetit,et al.  Mutations in genes encoding condensin complex proteins cause microcephaly through decatenation failure at mitosis , 2016, Genes & development.

[2]  D. Jamieson,et al.  Condensin II mutation causes T-cell lymphoma through tissue-specific genome instability , 2016, Genes & development.

[3]  L. Aragón,et al.  Smc5/6 complex regulates Sgs1 recombination functions , 2016, Current Genetics.

[4]  Raquel A. Oliveira,et al.  Novel insights into mitotic chromosome condensation , 2016, F1000Research.

[5]  E. Chautard,et al.  Nucleosome eviction in mitosis assists condensin loading and chromosome condensation , 2016, The EMBO journal.

[6]  W. Antonin,et al.  Chromosome condensation and decondensation during mitosis. , 2016, Current opinion in cell biology.

[7]  P. Jordan,et al.  Conditional mutation of Smc5 in mouse embryonic stem cells perturbs condensin localization and mitotic progression , 2016, Development.

[8]  J. R. Paulson,et al.  Condensin I and II behaviour in interphase nuclei and cells undergoing premature chromosome condensation , 2016, Chromosome Research.

[9]  T. Hirano,et al.  Condensin-Based Chromosome Organization from Bacteria to Vertebrates , 2016, Cell.

[10]  C. Dekker,et al.  Condensin Smc2-Smc4 Dimers Are Flexible and Dynamic , 2016, Cell reports.

[11]  Anton Goloborodko,et al.  Compaction and segregation of sister chromatids via active loop extrusion , 2016, bioRxiv.

[12]  F. Uhlmann,et al.  DNA Entry into and Exit out of the Cohesin Ring by an Interlocking Gate Mechanism , 2015, Cell.

[13]  K. Shirahige,et al.  Condensin Relocalization from Centromeres to Chromosome Arms Promotes Top2 Recruitment during Anaphase , 2015, Cell reports.

[14]  K. Shirahige,et al.  Condensin targets and reduces unwound DNA structures associated with transcription in mitotic chromosome condensation , 2015, Nature Communications.

[15]  Xiaoping Zhou,et al.  Condensin I and II Complexes License Full Estrogen Receptor α-Dependent Enhancer Activation. , 2015, Molecular cell.

[16]  Y. Hiraoka,et al.  Chromosome Scaffold is a Double-Stranded Assembly of Scaffold Proteins , 2015, Scientific Reports.

[17]  M. Prentiss,et al.  Chromosomes Progress to Metaphase in Multiple Discrete Steps via Global Compaction/Expansion Cycles , 2015, Cell.

[18]  K. Nasmyth,et al.  Condensin confers the longitudinal rigidity of chromosomes , 2015, Nature Cell Biology.

[19]  J. Dekker,et al.  Condensin-Driven Remodeling of X-Chromosome Topology during Dosage Compensation , 2015, Nature.

[20]  Tetsuya J. Kobayashi,et al.  Balancing acts of two HEAT subunits of condensin I support dynamic assembly of chromosome axes. , 2015, Developmental cell.

[21]  M. Yanagida,et al.  RNA pol II transcript abundance controls condensin accumulation at mitotically up-regulated and heat-shock-inducible genes in fission yeast , 2015, Genes to cells : devoted to molecular & cellular mechanisms.

[22]  Nam Ki Lee,et al.  Molecular Basis for SMC Rod Formation and Its Dissolution upon DNA Binding , 2015, Molecular cell.

[23]  J. Mann,et al.  Disruption of a Conserved CAP-D3 Threonine Alters Condensin Loading on Mitotic Chromosomes Leading to Chromosome Hypercondensation* , 2015, The Journal of Biological Chemistry.

[24]  D. Gerloff,et al.  Three-dimensional topology of the SMC2/SMC4 subcomplex from chicken condensin I revealed by cross-linking and molecular modelling , 2015, Open Biology.

[25]  Benjamin J. Raphael,et al.  Pan-Cancer Network Analysis Identifies Combinations of Rare Somatic Mutations across Pathways and Protein Complexes , 2014, Nature Genetics.

[26]  Kim Nasmyth,et al.  Closing the cohesin ring: Structure and function of its Smc3-kleisin interface , 2014, Science.

[27]  Ruedi Aebersold,et al.  Characterization of a DNA exit gate in the human cohesin ring , 2014, Science.

[28]  M. Beck,et al.  Association of condensin with chromosomes depends on DNA binding by its HEAT-repeat subunits , 2014, Nature Structural &Molecular Biology.

[29]  James Allan,et al.  Supercoiling in DNA and chromatin☆ , 2014, Current opinion in genetics & development.

[30]  M. Mimmack,et al.  The α isoform of topoisomerase II is required for hypercompaction of mitotic chromosomes in human cells , 2014, Nucleic acids research.

[31]  W. Fischle,et al.  A Cascade of Histone Modifications Induces Chromatin Condensation in Mitosis , 2014, Science.

[32]  Simon I. R. Lane,et al.  Premature dyad separation in meiosis II is the major segregation error with maternal age in mouse oocytes , 2014, Development.

[33]  F. Uhlmann,et al.  Biochemical reconstitution of topological DNA binding by the cohesin ring , 2013, Nature.

[34]  Job Dekker,et al.  Organization of the Mitotic Chromosome , 2013, Science.

[35]  David A. Orlando,et al.  Supplemental Information Multiple Structural Maintenance of Chromosome Complexes at Transcriptional Regulatory Elements , 2013 .

[36]  Sevinç Ercan,et al.  Genome-wide analysis of condensin binding in Caenorhabditis elegans , 2013, Genome Biology.

[37]  A. Oshlack,et al.  Condensin I associates with structural and gene regulatory regions in vertebrate chromosomes , 2013, Nature Communications.

[38]  F. Uhlmann,et al.  Condensin aids sister chromatid decatenation by topoisomerase II , 2013, Nucleic acids research.

[39]  T. Kuroiwa,et al.  Spatiotemporal dynamics of condensins I and II: evolutionary insights from the primitive red alga Cyanidioschyzon merolae , 2013, Molecular biology of the cell.

[40]  V. Schubert,et al.  The Arabidopsis CAP-D proteins are required for correct chromatin organisation, growth and fertility , 2013, Chromosoma.

[41]  S. Heidmann,et al.  Functional Dissection of the Drosophila melanogaster Condensin Subunit Cap-G Reveals Its Exclusive Association with Condensin I , 2013, PLoS genetics.

[42]  T. Hirano,et al.  Condensin II initiates sister chromatid resolution during S phase , 2013, The Journal of cell biology.

[43]  B. Oh,et al.  An asymmetric SMC–kleisin bridge in prokaryotic condensin , 2013, Nature Structural &Molecular Biology.

[44]  J. Rappsilber,et al.  Mitotic chromosomes are compacted laterally by KIF4 and condensin and axially by topoisomerase IIα , 2012, The Journal of cell biology.

[45]  Masao Nagasaki,et al.  Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms , 2012, Nature Genetics.

[46]  D. Sherratt,et al.  In Vivo Architecture and Action of Bacterial Structural Maintenance of Chromosome Proteins , 2012, Science.

[47]  T. Hirano Condensins: universal organizers of chromosomes with diverse functions. , 2012, Genes & development.

[48]  G. Bosco,et al.  Condensin II Promotes the Formation of Chromosome Territories by Inducing Axial Compaction of Polyploid Interphase Chromosomes , 2012, PLoS genetics.

[49]  P. Vagnarelli Mitotic chromosome condensation in vertebrates. , 2012, Experimental cell research.

[50]  Achilleas S Frangakis,et al.  Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30‐nm chromatin structure , 2012, The EMBO journal.

[51]  Owen J. Marshall,et al.  Contrasting roles of condensin I and condensin II in mitotic chromosome formation , 2012, Journal of Cell Science.

[52]  J. Baxter,et al.  A model for chromosome condensation based on the interplay between condensin and topoisomerase II. , 2012, Trends in genetics : TIG.

[53]  M. Yanagida,et al.  Opposing role of condensin hinge against replication protein A in mitosis and interphase through promoting DNA annealing , 2011, Open Biology.

[54]  Netta Golenberg,et al.  Different roles for Aurora B in condensin targeting during mitosis and meiosis , 2011, Development.

[55]  C. Haering,et al.  Condensin structures chromosomal DNA through topological links , 2011, Nature Structural &Molecular Biology.

[56]  Z. M. Petrushenko,et al.  A new family of bacterial condensins , 2011, Molecular microbiology.

[57]  T. Hirano,et al.  The relative ratio of condensin I to II determines chromosome shapes. , 2011, Genes & development.

[58]  Yoshinori Watanabe,et al.  Condensin association with histone H2A shapes mitotic chromosomes , 2011, Nature.

[59]  M. Oyama,et al.  The initial phase of chromosome condensation requires Cdk1-mediated phosphorylation of the CAP-D3 subunit of condensin II. , 2011, Genes & development.

[60]  T. Itoh,et al.  Chromosome length influences replication-induced topological stress , 2011, Nature.

[61]  J. Diffley,et al.  Positive Supercoiling of Mitotic DNA Drives Decatenation by Topoisomerase II in Eukaryotes , 2011, Science.

[62]  B. Neumann,et al.  53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress , 2011, Nature Cell Biology.

[63]  Juri Rappsilber,et al.  The Protein Composition of Mitotic Chromosomes Determined Using Multiclassifier Combinatorial Proteomics , 2010, Cell.

[64]  D. D'Amours,et al.  Three-step model for condensin activation during mitotic chromosome condensation , 2010, Cell cycle.

[65]  P. Dorrestein,et al.  PHF8 Mediates Histone H4 Lysine 20 Demethylation Events Involved in Cell Cycle Progression , 2010, Nature.

[66]  G. Witte,et al.  Structure and DNA binding activity of the mouse condensin hinge domain highlight common and diverse features of SMC proteins , 2010, Nucleic acids research.

[67]  David G Mets,et al.  Condensins Regulate Meiotic DNA Break Distribution, thus Crossover Frequency, by Controlling Chromosome Structure , 2009, Cell.

[68]  M. Yanagida Clearing the way for mitosis: is cohesin a target? , 2009, Nature Reviews Molecular Cell Biology.

[69]  J. Errington,et al.  Recruitment of Condensin to Replication Origin Regions by ParB/SpoOJ Promotes Chromosome Segregation in B. subtilis , 2009, Cell.

[70]  W. Earnshaw,et al.  Condensin: Architect of mitotic chromosomes , 2009, Chromosome Research.

[71]  M. Eisen,et al.  A condensin-like dosage compensation complex acts at a distance to control expression throughout the genome. , 2009, Genes & development.

[72]  J. Yates,et al.  Three Distinct Condensin Complexes Control C. elegans Chromosome Dynamics , 2009, Current Biology.

[73]  G. Bosco,et al.  Condensin II Resolves Chromosomal Associations to Enable Anaphase I Segregation in Drosophila Male Meiosis , 2008, PLoS genetics.

[74]  T. Itoh,et al.  Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. , 2008, Genes & development.

[75]  J. Rappsilber,et al.  Explorer Molecular and Genetic Analysis of Condensin Function in Vertebrate Cells , 2017 .

[76]  D. Sherratt,et al.  MukB colocalizes with the oriC region and is required for organization of the two Escherichia coli chromosome arms into separate cell halves , 2007, Molecular microbiology.

[77]  M. T. Parra,et al.  Condensin I Reveals New Insights on Mouse Meiotic Chromosome Structure and Dynamics , 2007, PloS one.

[78]  P. Giresi,et al.  X chromosome repression by localization of the C. elegans dosage compensation machinery to sites of transcription initiation , 2007, Nature Genetics.

[79]  T. Hirano,et al.  Reconstitution and subunit geometry of human condensin complexes , 2007, The EMBO journal.

[80]  A. Belmont Mitotic chromosome structure and condensation. , 2006, Current opinion in cell biology.

[81]  B. Meyer,et al.  Clustered DNA motifs mark X chromosomes for repression by a dosage compensation complex , 2006, Nature.

[82]  J. Ellenberg,et al.  Condensin I Stabilizes Chromosomes Mechanically through a Dynamic Interaction in Live Cells , 2006, Current Biology.

[83]  A. Strunnikov,et al.  Condensin Binding at Distinct and Specific Chromosomal Sites in the Saccharomyces cerevisiae Genome , 2005, Molecular and Cellular Biology.

[84]  T. Hirano,et al.  Dynamic molecular linkers of the genome: the first decade of SMC proteins. , 2005, Genes & development.

[85]  S. Cotterill,et al.  Drosophila CAP-D2 is required for condensin complex stability and resolution of sister chromatids , 2005, Journal of Cell Science.

[86]  T. Hirano Condensins: Organizing and Segregating the Genome , 2005, Current Biology.

[87]  E. Jabs,et al.  Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion , 2005, Nature Genetics.

[88]  J. Ellenberg,et al.  Distinct functions of condensin I and II in mitotic chromosome assembly , 2004, Journal of Cell Science.

[89]  Yuda Fang,et al.  Spatial and temporal regulation of Condensins I and II in mitotic chromosome assembly in human cells. , 2004, Molecular biology of the cell.

[90]  Tom Strachan,et al.  NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome , 2004, Nature Genetics.

[91]  K. Nasmyth,et al.  ATP Hydrolysis Is Required for Cohesin's Association with Chromosomes , 2003, Current Biology.

[92]  F. Uhlmann,et al.  A Model for ATP Hydrolysis-Dependent Binding of Cohesin to DNA , 2003, Current Biology.

[93]  A. F. Neuwald,et al.  Differential Contributions of Condensin I and Condensin II to Mitotic Chromosome Architecture in Vertebrate Cells , 2003, Cell.

[94]  R. Gassmann,et al.  Condensin is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes. , 2003, Developmental cell.

[95]  R. Dengler,et al.  Mutations in Arabidopsis condensin genes disrupt embryogenesis, meristem organization and segregation of homologous chromosomes during meiosis , 2003, Development.

[96]  U. K. Laemmli,et al.  A two-step scaffolding model for mitotic chromosome assembly. , 2003, Developmental cell.

[97]  J. Marko,et al.  Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[98]  Kim Nasmyth,et al.  Molecular architecture of SMC proteins and the yeast cohesin complex. , 2002, Molecular cell.

[99]  Barbara J Meyer,et al.  C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. , 2002, Genes & development.

[100]  H. Erickson,et al.  Condensin and cohesin display different arm conformations with characteristic hinge angles , 2002, The Journal of cell biology.

[101]  H. Erickson,et al.  Bimodal activation of SMC ATPase by intra‐ and inter‐molecular interactions , 2001, The EMBO journal.

[102]  K. Yokomori,et al.  A Human Condensin Complex Containing hCAP-C–hCAP-E and CNAP1, a Homolog of Xenopus XCAP-D2, Colocalizes with Phosphorylated Histone H3 during the Early Stage of Mitotic Chromosome Condensation , 2000, Molecular and Cellular Biology.

[103]  A. Strunnikov,et al.  The Condensin Complex Governs Chromosome Condensation and Mitotic Transmission of Rdna , 2000, The Journal of cell biology.

[104]  M. Yanagida,et al.  Fission yeast condensin complex: essential roles of non-SMC subunits for condensation and Cdc2 phosphorylation of Cut3/SMC4. , 1999, Genes & development.

[105]  N. Cozzarelli,et al.  13S Condensin Actively Reconfigures DNA by Introducing Global Positive Writhe Implications for Chromosome Condensation , 1999, Cell.

[106]  K. Kimura,et al.  ATP-Dependent Positive Supercoiling of DNA by 13S Condensin: A Biochemical Implication for Chromosome Condensation , 1997, Cell.

[107]  R. Kobayashi,et al.  Condensins, Chromosome Condensation Protein Complexes Containing XCAP-C, XCAP-E and a Xenopus Homolog of the Drosophila Barren Protein , 1997, Cell.

[108]  T. Mitchison,et al.  A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro , 1994, Cell.

[109]  W. Earnshaw,et al.  ScII: an abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure , 1994, The Journal of cell biology.

[110]  M. Yanagida,et al.  Fission yeast cut3 and cut14, members of a ubiquitous protein family, are required for chromosome condensation and segregation in mitosis. , 1994, The EMBO journal.

[111]  M. Yanagida,et al.  Identification of seven new cut genes involved in Schizosaccharomyces pombe mitosis. , 1993, Journal of cell science.

[112]  N. A. Locket Mitosis in mature lungfish retina , 1970 .

[113]  H. Ropers,et al.  Classical and Molecular Cytogenetics of the Pufferfish Tetraodon Nigroviridis , 2004, Chromosome Research.

[114]  A. Belmont,et al.  Visualization of early chromosome condensation: a hierarchical folding, axial glue model of chromosome structure , 2004 .

[115]  K. Nasmyth THE GENOME : Joining , Resolving , and Separating Sister Chromatids During Mitosis and Meiosis , 2006 .