Quantum machines with classical control

Herein we survey the main results concerning quantum automata and machines with classical control. These machines were originally proposed by Sernadas et al in [37], during the FCT QuantLog project. First, we focus on the expressivity of quantum automata with both quantum and classical states. We revise the result obtained in [32] where it was proved that such automata are able to recognise, with exponentially less states than deterministic finite automata, a family of regular languages that cannot be recognised by other types of quantum automata. Finally, we revise the concept of quantum Turing machine with classical control introduced in [25]. The novelty of these machines consists in the fact that their termination problem is completely deterministic, in opposition to other notions in the literature. Concretely, we revisit the result that such machines fulfil the s-m-n property, while keeping the expressivity of a quantum model for computation.

[1]  Tomoyuki Yamakami,et al.  Analysis Of Quantum Functions , 1999, Int. J. Found. Comput. Sci..

[2]  Dominique Perrin,et al.  Finite Automata , 1958, Philosophy.

[3]  M. O. Pereira,et al.  A Portrait of State-of-the-Art Research at the Technical University of Lisbon , 2007 .

[4]  Rohit Chadha,et al.  Extending Classical Logic for Reasoning About Quantum Systems , 2009 .

[5]  Lihua Wu,et al.  Characterizations of one-way general quantum finite automata , 2009, Theor. Comput. Sci..

[6]  Andris Ambainis,et al.  Quantum Finite Automata , 2011, NCMA.

[7]  Amílcar Sernadas,et al.  Quantum Computation and Information , 2006 .

[8]  Massimo Pica Ciamarra Quantum Reversibility and a New Model of Quantum Automaton , 2001, FCT.

[9]  Paulo Mateus,et al.  On the complexity of minimizing probabilistic and quantum automata , 2012, Inf. Comput..

[10]  Amílcar Sernadas,et al.  Reasoning About Quantum Systems , 2004, JELIA.

[11]  P. Mateus,et al.  Exogenous Quantum Logic , 2004 .

[12]  Ansis Rosmanis,et al.  Multi-letter Reversible and Quantum Finite Automata , 2007, Developments in Language Theory.

[13]  Cristina Sernadas,et al.  Precategories for combining probabilistic automata , 1999, CTCS.

[14]  Alberto Bertoni,et al.  Quantum Computing: 1-Way Quantum Automata , 2003, Developments in Language Theory.

[15]  Warp Drive With Zero Expansion by José Natário Departamento de Matemática Instituto Superior Técnico , 2019 .

[16]  Claudio Hermida,et al.  Paracategories II: adjunctions, fibrations and examples from probabilistic automata theory , 2004, Theor. Comput. Sci..

[17]  Imre Simon,et al.  Piecewise testable events , 1975, Automata Theory and Formal Languages.

[18]  Simon Perdrix,et al.  Classically controlled quantum computation , 2004, Mathematical Structures in Computer Science.

[19]  Amílcar Sernadas,et al.  Universality of quantum Turing machines with deterministic control , 2017, J. Log. Comput..

[20]  Kathrin Paschen Quantum finite automata using ancilla qubits , 2000 .

[21]  R. Feynman Simulating physics with computers , 1999 .

[22]  Symeon Bozapalidis Extending Stochastic and Quantum Functions , 2002, Theory of Computing Systems.

[23]  Wen-Guey Tzeng,et al.  A Polynomial-Time Algorithm for the Equivalence of Probabilistic Automata , 1992, SIAM J. Comput..

[24]  Carlo Mereghetti,et al.  Quantum finite automata with control language , 2006, RAIRO Theor. Informatics Appl..

[25]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[26]  Daowen Qiu,et al.  Determining the equivalence for one-way quantum finite automata , 2007, Theor. Comput. Sci..

[27]  Shenggen Zheng,et al.  State succinctness of two-way finite automata with quantum and classical states , 2012, Theor. Comput. Sci..

[28]  Alex Brodsky,et al.  Characterizations of 1-Way Quantum Finite Automata , 2002, SIAM J. Comput..

[29]  Paulo Mateus,et al.  Exponentially more concise quantum recognition of non-RMM regular languages , 2015, J. Comput. Syst. Sci..

[30]  James P. Crutchfield,et al.  Quantum automata and quantum grammars , 2000, Theor. Comput. Sci..

[31]  Paulo Mateus,et al.  Universal aspects of probabilistic automata , 2002, Mathematical Structures in Computer Science.

[32]  H. S. Allen The Quantum Theory , 1928, Nature.

[33]  Amílcar Sernadas,et al.  Weakly complete axiomatization of exogenous quantum propositional logic , 2005, Inf. Comput..

[34]  Christel Baier,et al.  Probabilistic ω-automata , 2012, JACM.

[35]  Farid M. Ablayev,et al.  On the Lower Bounds for One-Way Quantum Automata , 2000, MFCS.

[36]  Shou-Feng Wang,et al.  𝒫𝒮-regular languages , 2011, Int. J. Comput. Math..

[37]  Jozef Gruska,et al.  Multi-letter quantum finite automata: decidability of the equivalence and minimization of states , 2011, Acta Informatica.

[38]  M. W. Shields An Introduction to Automata Theory , 1988 .

[39]  Shenggen Zheng,et al.  One-Way Finite Automata with Quantum and Classical States , 2011, Languages Alive.

[40]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[41]  Andris Ambainis,et al.  1-way quantum finite automata: strengths, weaknesses and generalizations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[42]  Sheng Yu,et al.  Hierarchy and equivalence of multi-letter quantum finite automata , 2008, Theor. Comput. Sci..

[43]  Emmanuel Jeandel Topological Automata , 2006, Theory of Computing Systems.

[44]  Claudio Hermida,et al.  Paracategories I: internal paracategories and saturated partial algebras , 2003, Theor. Comput. Sci..

[45]  Maksim Kravtsev,et al.  Probabilistic Reversible Automata and Quantum Automata , 2002, COCOON.