Principal minors and rhombus tilings

The algebraic relations between the principal minors of an $n\times n$ matrix are somewhat mysterious, see e.g. [lin-sturmfels]. We show, however, that by adding in certain \emph{almost} principal minors, the relations are generated by a single relation, the so-called hexahedron relation, which is a composition of six cluster mutations. We give in particular a Laurent-polynomial parameterization of the space of $n\times n$ matrices, whose parameters consist of certain principal and almost principal minors. The parameters naturally live on vertices and faces of the tiles in a rhombus tiling of a convex $2n$-gon. A matrix is associated to an equivalence class of tilings, all related to each other by Yang-Baxter-like transformations. By specializing the initial data we can similarly parametrize the space of Hermitian symmetric matrices over $\mathbb R, \mathbb C$ or $\mathbb H$ the quaternions. Moreover by further specialization we can parametrize the space of \emph{positive definite} matrices over these rings.

[1]  M. M. Algæ , 2022 .

[2]  Abdelmalek Salem,et al.  Condensation of Determinants , 2007, 0712.0822.

[3]  Bernd Sturmfels,et al.  Open Problems in Algebraic Statistics , 2007, 0707.4558.

[4]  Bernard Leclerc,et al.  Cluster algebras , 2014, Proceedings of the National Academy of Sciences.

[5]  C. Storrar Edinburgh , 1875, The Accountant’s Magazine.

[6]  Richard A. Brualdi,et al.  Determinantal Identities: Gauss, Schur, . . . , 1983 .

[7]  Bernd Sturmfels,et al.  Polynomial relations among principal minors of a 4x4-matrix , 2008, ArXiv.

[8]  L. Oeding,et al.  Set-theoretic defining equations of the variety of principal minors of symmetric matrices , 2008, 0809.4236.

[9]  Richard A. Brualdi,et al.  Determinantal identities: Gauss, Schur, Cauchy, Sylvester, Kronecker, Jacobi, Binet, Laplace, Muir, and Cayley , 1983 .

[10]  Richard W. Kenyon,et al.  Tiling a polygon with parallelograms , 1993, Algorithmica.

[11]  T. Muir I.— The Law of Extensible Minors in Determinants , 1881 .

[12]  David E Speyer Perfect matchings and the octahedron recurrence , 2004 .

[13]  F. Dyson Correlations between eigenvalues of a random matrix , 1970 .

[14]  Bernd Sturmfels,et al.  Hyperdeterminantal relations among symmetric principal minors , 2006, math/0604374.

[15]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[16]  F. Dyson A Brownian‐Motion Model for the Eigenvalues of a Random Matrix , 1962 .

[17]  Non-commutative linear algebra and plurisubharmonic functions of quaternionic variables , 2001, math/0104209.

[18]  Mihai Ciucu,et al.  A Complementation Theorem for Perfect Matchings of Graphs Having a Cellular Completion , 1998, J. Comb. Theory, Ser. A.

[19]  Sergey Fomin,et al.  The Laurent Phenomenon , 2002, Adv. Appl. Math..

[20]  C. L. Dodgson,et al.  IV. Condensation of determinants, being a new and brief method for computing their arithmetical values , 1867, Proceedings of the Royal Society of London.

[21]  Richard Kenyon,et al.  Lectures on Dimers , 2009, 0910.3129.

[22]  E. Rains,et al.  Eynard–Mehta Theorem, Schur Process, and their Pfaffian Analogs , 2004, math-ph/0409059.

[23]  Robin Pemantle,et al.  Double-dimers, the Ising model and the hexahedron recurrence , 2013, J. Comb. Theory, Ser. A.

[24]  S. Fomin,et al.  Cluster algebras I: Foundations , 2001, math/0104151.