Principal minors and rhombus tilings
暂无分享,去创建一个
[2] Abdelmalek Salem,et al. Condensation of Determinants , 2007, 0712.0822.
[3] Bernd Sturmfels,et al. Open Problems in Algebraic Statistics , 2007, 0707.4558.
[4] Bernard Leclerc,et al. Cluster algebras , 2014, Proceedings of the National Academy of Sciences.
[5] C. Storrar. Edinburgh , 1875, The Accountant’s Magazine.
[6] Richard A. Brualdi,et al. Determinantal Identities: Gauss, Schur, . . . , 1983 .
[7] Bernd Sturmfels,et al. Polynomial relations among principal minors of a 4x4-matrix , 2008, ArXiv.
[8] L. Oeding,et al. Set-theoretic defining equations of the variety of principal minors of symmetric matrices , 2008, 0809.4236.
[9] Richard A. Brualdi,et al. Determinantal identities: Gauss, Schur, Cauchy, Sylvester, Kronecker, Jacobi, Binet, Laplace, Muir, and Cayley , 1983 .
[10] Richard W. Kenyon,et al. Tiling a polygon with parallelograms , 1993, Algorithmica.
[11] T. Muir. I.— The Law of Extensible Minors in Determinants , 1881 .
[12] David E Speyer. Perfect matchings and the octahedron recurrence , 2004 .
[13] F. Dyson. Correlations between eigenvalues of a random matrix , 1970 .
[14] Bernd Sturmfels,et al. Hyperdeterminantal relations among symmetric principal minors , 2006, math/0604374.
[15] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[16] F. Dyson. A Brownian‐Motion Model for the Eigenvalues of a Random Matrix , 1962 .
[17] Non-commutative linear algebra and plurisubharmonic functions of quaternionic variables , 2001, math/0104209.
[18] Mihai Ciucu,et al. A Complementation Theorem for Perfect Matchings of Graphs Having a Cellular Completion , 1998, J. Comb. Theory, Ser. A.
[19] Sergey Fomin,et al. The Laurent Phenomenon , 2002, Adv. Appl. Math..
[20] C. L. Dodgson,et al. IV. Condensation of determinants, being a new and brief method for computing their arithmetical values , 1867, Proceedings of the Royal Society of London.
[21] Richard Kenyon,et al. Lectures on Dimers , 2009, 0910.3129.
[22] E. Rains,et al. Eynard–Mehta Theorem, Schur Process, and their Pfaffian Analogs , 2004, math-ph/0409059.
[23] Robin Pemantle,et al. Double-dimers, the Ising model and the hexahedron recurrence , 2013, J. Comb. Theory, Ser. A.
[24] S. Fomin,et al. Cluster algebras I: Foundations , 2001, math/0104151.