E ff ects of Copper Dopants on the Magnetic Property of Lightly Cu-Doped ZnO Nanocrystals

: To explore the origin of magnetism, the e ff ect of light Cu-doping on ferromagnetic and photoluminescence properties of ZnO nanocrystals was investigated. These Cu-doped ZnO nanocrystals were prepared using a facile solution method. The Cu 2 + and Cu + ions were incorporated into Zn sites, as revealed by X-ray di ff raction (XRD) and X-ray photoelectron spectroscopy (XPS). At the Cu concentration of 0.25 at.%, the saturated magnetization reached the maximum and then decreased with increasing Cu concentration. With increasing Cu concentration, the photoluminescence (PL) spectroscopy indicated the distribution of V O + and V O ++ vacancies nearly unchanged. These results indicate that Cu ions can enhance the long-range ferromagnetic ordering at an ultralow concentration, but antiferromagnetic “Cu + -Vo-Cu 2 + ” couples may also be generated, even at a very low Cu-doping concentration.

[1]  Yi Hu,et al.  Effect of cobalt doping on optical, magnetic and photocatalytic properties of ZnO nanoparticles , 2020 .

[2]  Hong Zhang,et al.  Effect of doping 3d transition metal (Fe, Co, and Ni) on the electronic, magnetic and optical properties of pentagonal ZnO2 monolayer , 2020 .

[3]  F. Ruette,et al.  Theoretical study of Mn doping effects and O or Zn vacancies on the magnetic properties in wurtzite ZnO , 2020 .

[4]  R. Thangavel,et al.  Spin polarized carrier injection driven magneto-optical Kerr effect in Cr-doped ZnO nanorods , 2019, Physics Letters A.

[5]  Ranveer Kumar,et al.  Progress on Transition Metal-Doped ZnO Nanoparticles and Its Application , 2019, Industrial & Engineering Chemistry Research.

[6]  S. Naseem,et al.  Effect of Cu doping on the structural, magnetic and optical properties of ZnO thin films , 2018, Applied Physics A.

[7]  W. Azeem,et al.  Reversible Tuning of Ferromagnetism and Resistive Switching in ZnO/Cu Thin Films , 2017, ACS omega.

[8]  R. Kotnala,et al.  Understanding lattice defects to influence ferromagnetic order of ZnO nanoparticles by Ni, Cu, Ce ions , 2017 .

[9]  C. Durucan,et al.  Room temperature synthesis of Cu incorporated ZnO nanoparticles with room temperature ferromagnetic activity: Structural, optical and magnetic characterization , 2016 .

[10]  M. A. Khadar,et al.  Superparamagnetism in undoped ZnO nanorods , 2015 .

[11]  Huiyuan Sun,et al.  Unexpected large room-temperature ferromagnetism in porous Cu2O thin films , 2015 .

[12]  Jianhua Wu,et al.  Oxygen vacancy assisted multiferroic property of Cu doped ZnO films. , 2015, Physical chemistry chemical physics : PCCP.

[13]  Li-ping Zhu,et al.  Acceptor defect-participating magnetic exchange in ZnO:Cu nanocrystalline film: defect structure evolution, Cu–N synergetic role and magnetic control , 2015 .

[14]  D. Xue,et al.  Abnormal room temperature ferromagnetism in CuO-ZnO heterostructures: interface related or not? , 2015, Chemical communications.

[15]  T. Zeng,et al.  Role of oxygen defects in magnetic property of Cu doped ZnO , 2014 .

[16]  Y. Liu,et al.  Density-functional study on the ferromagnetism of (Mn,Na)-codoped ZnO , 2014 .

[17]  Shengbai Zhang,et al.  Understanding the presence of vacancy clusters in ZnO from a kinetic perspective , 2014 .

[18]  T. Hsueh,et al.  Vertical p-type Cu-doped ZnO/n-type ZnO homojunction nanowire-based ultraviolet photodetector by the furnace system with hotwire assistance. , 2014, ACS applied materials & interfaces.

[19]  Yichu Wu,et al.  Room-temperature ferromagnetism in hydrogenated ZnO nanoparticles , 2014 .

[20]  Shailaja Mahamuni,et al.  Correlation of structural and magnetic properties of Ni-doped ZnO nanocrystals , 2014 .

[21]  M. Sardar,et al.  Destruction of ferromagnetism in Cu-doped ZnO upon thermal annealing: role of oxygen vacancy , 2013 .

[22]  Weijing Liu,et al.  Effect of oxygen defects on ferromagnetism of Mn doped ZnO , 2013 .

[23]  Hyung Suk Kim,et al.  Optical and defect properties of hydrothermal ZnO with low lithium contamination , 2012 .

[24]  Wenzhong Shen,et al.  Cu-Doped ZnO Hemispherical Shell Structures: Synthesis and Room- Temperature Ferromagnetism Properties , 2012 .

[25]  K. Krishnamoorthy,et al.  Enhanced photocatalytic activity of Cu-doped ZnO nanorods , 2012 .

[26]  S. Mollah,et al.  Properties of Co/Ni codoped ZnO based nanocrystalline DMS , 2011 .

[27]  Zhigao Hu,et al.  Effect of oxygen defects on ferromagnetic of undoped ZnO , 2011 .

[28]  J. M. Chen,et al.  The characterization of Cr secondary oxide phases in ZnO films studied by X-ray spectroscopy and photoemission spectroscopy , 2011 .

[29]  A. Dinia,et al.  Evidence of superparamagnetic co clusters in pulsed laser deposition-grown Zn0.9Co0.1O thin films using atom probe tomography. , 2011, Journal of the American Chemical Society.

[30]  C. Sanchez-hanke,et al.  Room-temperature ferromagnetism of Cu-doped ZnO films probed by soft X-ray magnetic circular dichroism. , 2010, Physical review letters.

[31]  Prashant K. Sharma,et al.  Doping dependent room-temperature ferromagnetism and structural properties of dilute magnetic semiconductor ZnO:Cu2+ nanorods , 2009 .

[32]  W. Wang,et al.  Magnetophotoluminescence properties of Co-doped ZnO nanorods , 2009 .

[33]  H. Yadav,et al.  Structural studies and Raman spectroscopy of forbidden zone boundary phonons in Ni‐doped ZnO ceramics , 2009 .

[34]  W. Y. Cheung,et al.  Aggregation-based growth and magnetic properties of inhomogeneous Cu-doped ZnO nanocrystals , 2007 .

[35]  J. Narayan,et al.  Room temperature ferromagnetism in Zn1−xCuxO thin films , 2007 .

[36]  A. Djurišić,et al.  Defects in ZnO nanorods prepared by a hydrothermal method. , 2006, The journal of physical chemistry. B.

[37]  Nick S. Norberg,et al.  Chemical manipulation of high-T(C) ferromagnetism in ZnO diluted magnetic semiconductors. , 2005, Physical review letters.

[38]  P. Midgley,et al.  Room temperature ferromagnetism in bulk Mn-Doped Cu2O , 2005 .

[39]  Ram Seshadri,et al.  Zinc oxide-based diluted magnetic semiconductors , 2005 .

[40]  M. Venkatesan,et al.  Donor impurity band exchange in dilute ferromagnetic oxides , 2005, Nature materials.

[41]  Ram Seshadri,et al.  Absence of ferromagnetism in Co and Mn substituted polycrystalline ZnO , 2004, cond-mat/0403196.

[42]  Xiao-bing Feng Electronic structures and ferromagnetism of Cu- and Mn-doped ZnO , 2004 .

[43]  Kee-Joo Chang,et al.  Ferromagnetic versus antiferromagnetic interaction in Co-doped ZnO , 2004 .

[44]  Min‐Sik Park,et al.  Ferromagnetism in ZnO codoped with transition metals: Zn 1 − x ( FeCo ) x O and Zn 1 − x ( FeCu ) x O , 2003 .

[45]  Frantisek Svec,et al.  Flow control valves for analytical microfluidic chips without mechanical parts based on thermally responsive monolithic polymers. , 2003, Analytical chemistry.

[46]  H. C. Ong,et al.  Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films , 2001 .

[47]  Andries Meijerink,et al.  The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission , 2000 .

[48]  X Wang,et al.  X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films , 2000 .

[49]  William L. Warren,et al.  Correlation between photoluminescence and oxygen vacancies in ZnO phosphors , 1996 .

[50]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .