Differential equations for deformed Laguerre polynomials
暂无分享,去创建一个
[1] D. Shevitz,et al. Exactly solvable unitary matrix models: Multicritical potentials and correlations , 1990 .
[2] Yang Chen,et al. Painlevé III and a singular linear statistics in Hermitian random matrix ensembles, I , 2008, J. Approx. Theory.
[3] Mourad E. H. Ismail,et al. Discriminants and Functional Equations for Polynomials Orthogonal on the Unit Circle , 2001, J. Approx. Theory.
[4] Edouard Brézin,et al. Applications of random matrices in physics , 2006 .
[5] Peter J. Forrester,et al. The Distribution of the first Eigenvalue Spacing at the Hard Edge of the Laguerre Unitary Ensemble , 2007, 0704.1926.
[6] Yang Chen,et al. Painlevé IV and degenerate Gaussian unitary ensembles , 2006 .
[7] Bi-orthogonal Polynomials on the Unit Circle, Regular Semi-Classical Weights and Integrable Systems , 2004, math/0412394.
[8] Alphonse P. Magnus,et al. Painleve´-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials , 1995 .
[9] William C. Bauldry. Estimates of asymmetric Freud polynomials on the real line , 1990 .
[10] Limiting Distributions for a Polynuclear Growth Model with External Sources , 2000, math/0003130.
[11] Kazuo Okamoto. Studies on the Painlevé equations II. Fifth Painlevé equation PV , 1987 .
[12] Yang Chen,et al. Orthogonal polynomials with discontinuous weights , 2005, math-ph/0501057.
[13] Michio Jimbo,et al. Monodromy preserving deformation of linear ordinary differential equations with rational coefficients: I. General theory and τ-function , 1981 .
[14] P. J. Forrester,et al. Discrete Painlevé equations and random matrix averages , 2003 .
[15] D. V. Chudnovsky,et al. Riemann Monodromy Problem, Isomonodromy Deformation Equations and Completely Integrable Systems , 1980 .
[16] J. Normand,et al. Calculation of some determinants using the s-shifted factorial , 2004, math-ph/0401006.
[17] Alexei Borodin,et al. Fredholm determinants, Jimbo‐Miwa‐Ueno τ‐functions, and representation theory , 2001 .
[18] J. Baik,et al. The asymptotics of monotone subsequences of involutions , 1999, math/9905084.
[19] Paul Nevai,et al. Orthogonal polynomials and their derivatives, I , 1984 .
[20] Y. Ohta,et al. A determinant formula for a class of rational solutions of Painlevé V equation , 2001, Nagoya Mathematical Journal.
[21] J. Shohat. A differential equation for orthogonal polynomials , 1939 .
[23] Craig A. Tracy,et al. Mathematical Physics © Springer-Verlag 1994 Fredholm Determinants, Differential Equations and Matrix Models , 2022 .
[24] P. Moerbeke,et al. Matrix integrals, Toda symmetries, Virasoro constraints, and orthogonal polynomials , 1995, solv-int/9706010.
[25] P. Forrester,et al. Application of the τ-function theory of Painlevé equations to random matrices: PVI , the JUE, CyUE, cJUE and scaled limits , 2002, Nagoya Mathematical Journal.
[26] D. Clark,et al. Estimates of the Hermite and the Freud polynomials , 1990 .
[27] Athanassios S. Fokas,et al. Discrete Painlevé equations and their appearance in quantum gravity , 1991 .
[28] Yang Chen,et al. Ladder operators and differential equations for orthogonal polynomials , 1997 .
[29] Athanassios S. Fokas,et al. The isomonodromy approach to matric models in 2D quantum gravity , 1992 .
[30] Michio Jimbo,et al. Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III , 1981 .
[31] Yang Chen,et al. A generalization of the Chebyshev polynomials , 2002 .
[32] Herbert Spohn,et al. Exact Scaling Functions for One-Dimensional Stationary KPZ Growth , 2004 .
[33] UNITARY MATRIX MODELS AND PAINLEVÉ III , 1996, hep-th/9609214.
[34] E. Laguerre,et al. Sur la réduction en fractions continues d'une fraction qui satisfait à une équation différentielle linéaire du premier ordre dont les coefficients sont rationnels , 1885 .
[35] Yang Chen,et al. Painlevé V and the distribution function of a discontinuous linear statistic in the Laguerre unitary ensembles , 2008, 0807.4758.