Differential equations for deformed Laguerre polynomials

The distribution function for the first eigenvalue spacing in the Laguerre unitary ensemble of finite size may be expressed in terms of a solution of the fifth Painleve transcendent. The generating function of a certain discontinuous linear statistic of the Laguerre unitary ensemble can similarly be expressed in terms of a solution of the fifth Painleve equation. The methodology used to derive these results rely on two theories regarding differential equations for orthogonal polynomial systems, one involving isomonodromic deformations and the other ladder operators. We compare the two theories by showing how either can be used to obtain a characterization of a more general Laguerre unitary ensemble average in terms of the Hamiltonian system for Painleve V.

[1]  D. Shevitz,et al.  Exactly solvable unitary matrix models: Multicritical potentials and correlations , 1990 .

[2]  Yang Chen,et al.  Painlevé III and a singular linear statistics in Hermitian random matrix ensembles, I , 2008, J. Approx. Theory.

[3]  Mourad E. H. Ismail,et al.  Discriminants and Functional Equations for Polynomials Orthogonal on the Unit Circle , 2001, J. Approx. Theory.

[4]  Edouard Brézin,et al.  Applications of random matrices in physics , 2006 .

[5]  Peter J. Forrester,et al.  The Distribution of the first Eigenvalue Spacing at the Hard Edge of the Laguerre Unitary Ensemble , 2007, 0704.1926.

[6]  Yang Chen,et al.  Painlevé IV and degenerate Gaussian unitary ensembles , 2006 .

[7]  Bi-orthogonal Polynomials on the Unit Circle, Regular Semi-Classical Weights and Integrable Systems , 2004, math/0412394.

[8]  Alphonse P. Magnus,et al.  Painleve´-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials , 1995 .

[9]  William C. Bauldry Estimates of asymmetric Freud polynomials on the real line , 1990 .

[10]  Limiting Distributions for a Polynuclear Growth Model with External Sources , 2000, math/0003130.

[11]  Kazuo Okamoto Studies on the Painlevé equations II. Fifth Painlevé equation PV , 1987 .

[12]  Yang Chen,et al.  Orthogonal polynomials with discontinuous weights , 2005, math-ph/0501057.

[13]  Michio Jimbo,et al.  Monodromy preserving deformation of linear ordinary differential equations with rational coefficients: I. General theory and τ-function , 1981 .

[14]  P. J. Forrester,et al.  Discrete Painlevé equations and random matrix averages , 2003 .

[15]  D. V. Chudnovsky,et al.  Riemann Monodromy Problem, Isomonodromy Deformation Equations and Completely Integrable Systems , 1980 .

[16]  J. Normand,et al.  Calculation of some determinants using the s-shifted factorial , 2004, math-ph/0401006.

[17]  Alexei Borodin,et al.  Fredholm determinants, Jimbo‐Miwa‐Ueno τ‐functions, and representation theory , 2001 .

[18]  J. Baik,et al.  The asymptotics of monotone subsequences of involutions , 1999, math/9905084.

[19]  Paul Nevai,et al.  Orthogonal polynomials and their derivatives, I , 1984 .

[20]  Y. Ohta,et al.  A determinant formula for a class of rational solutions of Painlevé V equation , 2001, Nagoya Mathematical Journal.

[21]  J. Shohat A differential equation for orthogonal polynomials , 1939 .

[23]  Craig A. Tracy,et al.  Mathematical Physics © Springer-Verlag 1994 Fredholm Determinants, Differential Equations and Matrix Models , 2022 .

[24]  P. Moerbeke,et al.  Matrix integrals, Toda symmetries, Virasoro constraints, and orthogonal polynomials , 1995, solv-int/9706010.

[25]  P. Forrester,et al.  Application of the τ-function theory of Painlevé equations to random matrices: PVI , the JUE, CyUE, cJUE and scaled limits , 2002, Nagoya Mathematical Journal.

[26]  D. Clark,et al.  Estimates of the Hermite and the Freud polynomials , 1990 .

[27]  Athanassios S. Fokas,et al.  Discrete Painlevé equations and their appearance in quantum gravity , 1991 .

[28]  Yang Chen,et al.  Ladder operators and differential equations for orthogonal polynomials , 1997 .

[29]  Athanassios S. Fokas,et al.  The isomonodromy approach to matric models in 2D quantum gravity , 1992 .

[30]  Michio Jimbo,et al.  Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III , 1981 .

[31]  Yang Chen,et al.  A generalization of the Chebyshev polynomials , 2002 .

[32]  Herbert Spohn,et al.  Exact Scaling Functions for One-Dimensional Stationary KPZ Growth , 2004 .

[33]  UNITARY MATRIX MODELS AND PAINLEVÉ III , 1996, hep-th/9609214.

[34]  E. Laguerre,et al.  Sur la réduction en fractions continues d'une fraction qui satisfait à une équation différentielle linéaire du premier ordre dont les coefficients sont rationnels , 1885 .

[35]  Yang Chen,et al.  Painlevé V and the distribution function of a discontinuous linear statistic in the Laguerre unitary ensembles , 2008, 0807.4758.