Symbolic Model Checking: 10^20 States and Beyond

[1]  Pierre Wolper,et al.  A Partial Approach to Model Checking , 1994, Inf. Comput..

[2]  Edmund M. Clarke,et al.  A Unified Approch for Showing Language Inclusion and Equivalence Between Various Types of omega-Automata , 1993, Inf. Process. Lett..

[3]  Edmund M. Clarke,et al.  Representing circuits more efficiently in symbolic model checking , 1991, 28th ACM/IEEE Design Automation Conference.

[4]  Randal E. Bryant,et al.  On the Complexity of VLSI Implementations and Graph Representations of Boolean Functions with Application to Integer Multiplication , 1991, IEEE Trans. Computers.

[5]  Edmund M. Clarke,et al.  Symbolic Model Checking with Partitioned Transistion Relations , 1991, VLSI.

[6]  Edmund M. Clarke,et al.  A parallel algorithm for constructing binary decision diagrams , 1990, Proceedings., 1990 IEEE International Conference on Computer Design: VLSI in Computers and Processors.

[7]  E. Clarke,et al.  Sequential circuit verification using symbolic model checking , 1990, 27th ACM/IEEE Design Automation Conference.

[8]  Patrice Godefroid Using Partial Orders to Improve Automatic Verification Methods , 1990, CAV.

[9]  Hon Fung Li,et al.  Using Partial-Order Semantics to Avoid the State Explosion Problem in Asynchronous Systems , 1990, CAV.

[10]  Edmund M. Clarke,et al.  A Unified Approach For Showing Language Containment And Equivalence Between Various Types Of Omega-Automata , 1990, CAAP.

[11]  David Walker,et al.  Local Model Checking in the Modal mu-Calculus , 1991, Theor. Comput. Sci..

[12]  Antti Valmari,et al.  Stubborn sets for reduced state space generation , 1991, Applications and Theory of Petri Nets.

[13]  Tomohiro Yoneda,et al.  A fast timing verification method based on the independence of units , 1989, [1989] The Nineteenth International Symposium on Fault-Tolerant Computing. Digest of Papers.

[14]  Olivier Coudert,et al.  Verification of Synchronous Sequential Machines Based on Symbolic Execution , 1989, Automatic Verification Methods for Finite State Systems.

[15]  Chin-Laung Lei,et al.  Efficient Model Checking in Fragments of the Propositional Mu-Calculus (Extended Abstract) , 1986, LICS.

[16]  Edmund M. Clarke,et al.  Automatic Verification of Sequential Circuits Using Temporal Logic , 1986, IEEE Transactions on Computers.

[17]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[18]  A. P. Sistla,et al.  Automatic verification of finite-state concurrent systems using temporal logic specifications , 1986, TOPL.

[19]  Pierre Wolper,et al.  Synthesis of Communicating Processes from Temporal Logic Specifications , 1981, TOPL.

[20]  Robin Milner,et al.  Calculi for Synchrony and Asynchrony , 1983, Theor. Comput. Sci..

[21]  Dexter Kozen,et al.  RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .

[22]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[23]  David Michael Ritchie Park Finiteness is Mu-Ineffable , 1976, Theor. Comput. Sci..