Theory-Specific Automated Reasoning

In designing a large-scale computerized proof system, one is often confronted with issues of two kinds: issues regarding an underlying logical calculus, and issues that refer to theories, either specified axiomatically or characterized by indication of either a privileged model or a family of intended models. Proof services related to the theories most often take the form of satisfiability decision or semi-decision procedures (in a sense, polyadic inference rules), while some of the services offered by the calculus (e.g., the Davis-Putnam propositional satisfiability checker) provide low-level mechanisms for integrating services of the former kind. Integration among services can ensure speed-up (i.e., lower number of steps) in the proofs, but it must always be legitimatized by a conservativeness result. Interoperability among proof checkers and autonomous theorem provers is another key point of integration. In discussing these and related issues, this paper refers to Set Theory as the unifying background, and to a specific proof-checker based on a slightly unorthodox formalization of it as an arena for experimentation.

[1]  Domenico Cantone,et al.  Set Theory for Computing: From Decision Procedures to Declarative Programming with Sets , 2011 .

[2]  W. W. Bledsoe,et al.  Non-Resolution Theorem Proving , 1977, Artif. Intell..

[3]  Domenico Cantone,et al.  Set Theory for Computing , 2001, Monographs in Computer Science.

[4]  Andrea Formisano,et al.  An Equational Re-engineering of Set Theories , 1998, FTP.

[5]  Alberto Policriti,et al.  Decision procedures for elementary sublanguages of set theory: XIII. Model graphs, reflection and decidability , 2004, Journal of Automated Reasoning.

[6]  Domenico Cantone,et al.  A Computerized Referee , 2006, Reasoning, Action and Interaction in AI Theories and Systems.

[7]  James Renegar,et al.  A faster PSPACE algorithm for deciding the existential theory of the reals , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[8]  A. Tarski What is Elementary Geometry , 1959 .

[9]  Domenico Cantone,et al.  Decision Algorithms for Some Fragments of Analysis and Related Areas , 2018 .

[10]  Calogero G. Zarba,et al.  Combining Decision Procedures , 2002, 10th Anniversary Colloquium of UNU/IIST.

[11]  Edmond Schonberg,et al.  Programming with Sets: An Introduction to SETL , 1986 .

[12]  B. Dreben,et al.  The decision problem: Solvable classes of quantificational formulas , 1979 .

[13]  Calogero G. Zarba Combining Multisets with Integers , 2002, CADE.

[14]  Gianfranco Rossi,et al.  Che Genere di Insiemi/Multi-insiemi/Iper-insiemi Incorporare nella Programazione Logica? , 1993, GULP.

[15]  Alexandru I. Tomescu,et al.  Self-applied proof verication (Extended abstract) ? , 2007 .

[16]  Dag Prawitz,et al.  A Mechanical Proof Procedure and its Realization in an Electronic Computer , 1960, JACM.

[17]  Alan Bundy,et al.  Best-First Rippling , 2006, Reasoning, Action and Interaction in AI Theories and Systems.

[18]  Donald W. Loveland,et al.  Automated theorem proving: a quarter-century review , 1984 .

[19]  B. Buchberger,et al.  Gröbner bases and applications , 1998 .

[20]  Domenico Cantone,et al.  Decision algorithms for fragments of real analysis. I. Continuous functions with strict convexity and concavity predicates , 2006, J. Symb. Comput..

[21]  Daniel Kroening,et al.  Decision Procedures - An Algorithmic Point of View , 2008, Texts in Theoretical Computer Science. An EATCS Series.

[22]  Calogero G. Zarba,et al.  Combining Sets with Integers , 2002, FroCoS.

[23]  Antonis C. Kakas,et al.  Computational Logic: Logic Programming and Beyond , 2002, Lecture Notes in Computer Science.

[24]  Domenico Cantone,et al.  Decision Procedures for Elementary Sublanguages of Set Theory. V. Multilevel Syllogistic Extended by the General Union Operator , 2015, J. Comput. Syst. Sci..

[25]  Abraham Robinson,et al.  Elementary properties of ordered abelian groups , 1960 .

[26]  Michael J. Maher,et al.  Constraint Logic Programming: A Survey , 1994, J. Log. Program..

[27]  Roy Dyckhoff Automated Reasoning with Analytic Tableaux and Related Methods , 2000, Lecture Notes in Computer Science.

[28]  Larry Wos,et al.  What Is Automated Reasoning? , 1987, J. Autom. Reason..

[29]  Jean-Pierre Jouannaud,et al.  Rewrite Systems , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[30]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[31]  Agostino Dovier,et al.  A Language for Programming in Logic with Finite Sets , 1996, J. Log. Program..

[32]  Agostino Dovier,et al.  Decidability results for sets with atoms , 2006, TOCL.

[33]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[34]  Art Quaife,et al.  Automated deduction in von Neumann-Bernays-Gödel set theory , 1992, Journal of Automated Reasoning.

[35]  H. Brown,et al.  Computational Problems in Abstract Algebra , 1971 .

[36]  Peter B. Andrews Resolution in type theory , 1971, Journal of Symbolic Logic.

[37]  Eugenio G. Omodeo,et al.  A 'Theory' Mechanism for a Proof-Verifier Based on First-Order Set Theory , 2002, Computational Logic: Logic Programming and Beyond.

[38]  Calogero G. Zarba,et al.  Combining Nonstably Infinite Theories , 2005, Journal of Automated Reasoning.

[39]  Calogero G. Zarba A Tableau Calculus for Combining Non-disjoint Theories , 2002, TABLEAUX.

[40]  Agostino Dovier,et al.  {log}: A Logic Programming Language with Finite Sets , 1991, ICLP.

[41]  Gernot Salzer,et al.  Automated Deduction in Classical and Non-Classical Logics , 2002, Lecture Notes in Computer Science.

[42]  Eugenio G. Omodeo The linked conjunct method for automatic deduction and related search techniques , 1982 .

[43]  William M. Farmer,et al.  IMPS: An interactive mathematical proof system , 1990, Journal of Automated Reasoning.

[44]  Martin Davis Chapter 1 – The Early History of Automated Deduction: Dedicated to the memory of Hao Wang , 2001 .

[45]  Robert J. Irwin Review of Set theory for computing: from decision procedures to declarative programming with sets by Domenico Cantone, Eugenio Omodeo and Alberto Policriti. Springer-Verlag 2001. , 2003, SIGA.

[46]  S. Basu,et al.  Algorithms in Real Algebraic Geometry (Algorithms and Computation in Mathematics) , 2006 .

[47]  R. Vaught On a Theorem of Cobham Concerning Undecidable Theories , 1966 .

[48]  Alex K. Simpson,et al.  Computational Adequacy in an Elementary Topos , 1998, CSL.

[49]  S. Chou Mechanical Geometry Theorem Proving , 1987 .

[50]  Agostino Dovier,et al.  Embedding Finite Sets in a Logic Programming Language , 1992, ELP.

[51]  H. Bedmann,et al.  Beiträge zur Algebra der Logik, insbesondere zum Entscheidungsproblem , 1922 .

[52]  J. Schwartz,et al.  Metamathematical extensibility for theorem verifiers and proof-checkers☆ , 1979 .

[53]  Alan Robinson,et al.  Handbook of automated reasoning , 2001 .

[54]  Agostino Dovier,et al.  On T Logic Programming , 1997, ILPS.

[55]  Andrea Formisano,et al.  Instructing Equational Set-Reasoning with Otter , 2001, IJCAR.

[56]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[57]  R. L. Goodstein,et al.  The Decision Problem , 1957, The Mathematical Gazette.

[58]  Calogero G. Zarba,et al.  A Decision Procedure for a Sublanguage of Set Theory Involving Monotone, Additive, and Multiplicative Functions, I: The Two-Level Case , 2004, Journal of Automated Reasoning.

[59]  Lars-Henrik Eriksson,et al.  Extensions of Logic Programming , 1993, Lecture Notes in Computer Science.

[60]  J. Cherniavsky Review of "Unsolvable classes of quantificational formulas" by Harry R. Lewis. Addison-Wesley 1979. and "The decision problem: solvable classes of quantificational formulas" by Burton Dreben and Warren D. Goldfarb. Addison-Wesley 1979. , 1982, SIGA.

[61]  Mark E. Stickel,et al.  Automated deduction by theory resolution , 1985, Journal of Automated Reasoning.

[62]  Cesare Tinelli,et al.  Combining Equational Theories Sharing Non-Collapse-Free Constructors , 2000, FroCoS.

[63]  Franco Montagna,et al.  A Minimal Predicative Set Theory , 1994, Notre Dame J. Formal Log..

[64]  Herman Geuvers,et al.  Social processes, program verification and all that , 2009, Mathematical Structures in Computer Science.

[65]  Domenico Cantone,et al.  What Is Computable Set Theory , 1990 .

[66]  Vincenzo Cutello,et al.  Decision Problems for Tarski and Presburger Arithmetics Extended With Sets , 1990, CSL.

[67]  D. Grigor'ev Complexity of deciding Tarski algebra , 1988 .

[68]  George E. Collins,et al.  Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975, Automata Theory and Formal Languages.

[69]  Peter B. Andrews,et al.  Theorem Proving in Type Theory , 1977, IJCAI.

[70]  Vincenzo Cutello,et al.  Decision procedures for elementary sublanguages of set theory , 2004, Journal of Automated Reasoning.

[71]  Robert E. Shostak,et al.  Deciding Combinations of Theories , 1982, JACM.

[72]  A. Myasnikov,et al.  Elementary theory of free non-abelian groups , 2006 .

[73]  Greg Nelson,et al.  Simplification by Cooperating Decision Procedures , 1979, TOPL.

[74]  Andrea Formisano,et al.  T-Resolution: Refinements and Model Elimination , 2004, Journal of Automated Reasoning.

[75]  Agostino Dovier,et al.  Solvable Set/Hyperset Contexts: II. A Goal-Driven Unification Algorithm for the Blended Case , 1999, Applicable Algebra in Engineering, Communication and Computing.

[76]  Domenico Cantone,et al.  Cumulative hierarchies and computability over universes of sets , 2008 .

[77]  Franco Parlamento,et al.  Truth in V for ∃*∀∀-sentences is decidable , 2006, J. Symb. Log..

[78]  Jacques D. Fleuriot,et al.  IsaPlanner: A Prototype Proof Planner in Isabelle , 2003, CADE.

[79]  Calogero G. ZarbaStanford Combining Lists with Integers ? , 2001 .

[80]  Ilkka Niemelä,et al.  Stable models and difference logic , 2008, Annals of Mathematics and Artificial Intelligence.

[81]  Franz Baader,et al.  Unification theory , 1986, Decis. Support Syst..

[82]  W. Wu ON THE DECISION PROBLEM AND THE MECHANIZATION OF THEOREM-PROVING IN ELEMENTARY GEOMETRY , 2008 .

[83]  Alberto Policriti,et al.  Decidability of ∃*∀-Sentences in Membership Theories , 1996, Math. Log. Q..

[84]  Johan G. F. Belinfante,et al.  Reasoning about Iteration in Gödel's Class Theory , 2003, CADE.

[85]  Natarajan Shankar,et al.  Combining Shostak Theories , 2002, RTA.

[86]  Andrei Voronkov,et al.  Automated Deduction—CADE-18 , 2002, Lecture Notes in Computer Science.

[87]  Edith Schonberg,et al.  Programming with Sets , 1986, Texts and Monographs in Computer Science.

[88]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[89]  Domenico Cantone,et al.  Various commonly occurring decidable extensions of multi-level syllogistic , 2003 .

[90]  Alfredo Ferro,et al.  Decision Procedures for Some Fragments of Set Theory , 1980, CADE.

[91]  Maria Davis,et al.  Eliminating the irrelevant from mechanical proofs , 1963 .

[92]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[93]  Domenico Cantone,et al.  Notes from the Logbook of a Proof-Checker's Project , 2003, Verification: Theory and Practice.

[94]  Alexandru I. Tomescu,et al.  Using aetnanova to formally prove that the Davis-Putnam satisfiability test is correct , 2008 .

[95]  M. Fischer,et al.  SUPER-EXPONENTIAL COMPLEXITY OF PRESBURGER ARITHMETIC , 1974 .

[96]  Vincenzo Cutello,et al.  Decision Procedures for Elementary Sublanguages of Set Theory. XIV. Three Languages Involving Rank Related Constructs , 1988, ISSAC.

[97]  Heinrich Behmann,et al.  Beiträge zur Algebra der Logik, insbesondere zum Entscheidungsproblem , 1922 .

[98]  Christos H. Papadimitriou,et al.  On the complexity of integer programming , 1981, JACM.

[99]  Domenico Cantone,et al.  Transitive Venn diagrams with applications to the decision problem in set theory , 1999, APPIA-GULP-PRODE.

[100]  Calogero G. Zarba,et al.  A New Fast Tableau-Based Decision Procedure for an Unquantified Fragment of Set Theory , 1998, FTP.

[101]  Martin D. Davis,et al.  The Early History of Automated Deduction , 2001, Handbook of Automated Reasoning.

[102]  Calogero G. Zarba Combining Sets with Elements , 2003, Verification: Theory and Practice.

[103]  Franco Parlamento,et al.  Decidability and Completeness for Open Formulas of Membership Theories , 1995, Notre Dame J. Formal Log..

[104]  E. W. Ng Symbolic and Algebraic Computation , 1979, Lecture Notes in Computer Science.

[105]  B. F. Caviness,et al.  Quantifier Elimination and Cylindrical Algebraic Decomposition , 2004, Texts and Monographs in Symbolic Computation.

[106]  Ulrich Kohlenbach,et al.  Applied Proof Theory - Proof Interpretations and their Use in Mathematics , 2008, Springer Monographs in Mathematics.

[107]  Wanda Szmielew Elementary properties of Abelian groups , 1955 .

[108]  Alberto Policriti,et al.  T-Theorem Proving I , 1995, J. Symb. Comput..

[109]  Dima Grigoriev,et al.  Complexity of Deciding Tarski Algebra , 1988, J. Symb. Comput..

[110]  Agostino Dovier,et al.  Narrowing the Gap between Set-Constraints and CLP(SET)-Constraints , 1998, APPIA-GULP-PRODE.

[111]  Alberto Policriti,et al.  Decision procedures for elementary sublanguages of set theory IX. Unsolvability of the decision problem for a restricted subclass of the Δ0‐formulas in set theory , 1988 .

[112]  Alberto Policriti,et al.  Solvable set/hyperset contexts: I. Some decision procedures for the pure, finite case , 1995 .

[113]  D. Knuth,et al.  Simple Word Problems in Universal Algebras , 1983 .

[114]  Agostino Dovier,et al.  Set unification , 2001, Theory and Practice of Logic Programming.

[115]  Lawrence C. Paulson,et al.  Set theory for verification. II: Induction and recursion , 1995, Journal of Automated Reasoning.

[116]  Leon Sterling,et al.  Meta-Level Inference and Program Verification , 1982, CADE.

[117]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[118]  Larry Wos The problem of finding an inference rule for set theory , 2004, Journal of Automated Reasoning.

[119]  Greg Nelson,et al.  Fast Decision Procedures Based on Congruence Closure , 1980, JACM.

[120]  Michaël Rusinowitch,et al.  Satisfiability Procedures for Combination of Theories Sharing Integer Offsets , 2009, TACAS.

[121]  Domenico Cantone,et al.  Formative Processes with Applications to the Decision Problem in Set Theory, I. Powerset and Singleton Operators , 2002, Inf. Comput..

[122]  Cesare Tinelli,et al.  Unions of non-disjoint theories and combinations of satisfiability procedures , 2003, Theor. Comput. Sci..

[123]  Franco Parlamento,et al.  The Decidability of the ∀*∃ Class and the Axiom of Foundation , 2001, Notre Dame J. Formal Log..

[124]  Silvio Ghilardi,et al.  Decision procedures for extensions of the theory of arrays , 2007, Annals of Mathematics and Artificial Intelligence.

[125]  Agostino Dovier,et al.  Minimal Set Unification , 1995, PLILP.

[126]  A. Ferro,et al.  Decision Procedures for Elementary Sublanguages of Set Theory II , 1981 .

[127]  Alberto Policriti,et al.  The Bernays-Schönfinkel-Ramsey class for set theory: semidecidability , 2010, J. Symb. Log..

[128]  Alan Bundy,et al.  Automated Deduction — CADE-12 , 1994, Lecture Notes in Computer Science.

[129]  C PaulsonLawrence Set theory for verification. I , 1993 .

[130]  Robert S. Boyer,et al.  The QED Manifesto , 1994, CADE.

[131]  J. H. Geuvers,et al.  Proof assistants: History, ideas and future , 2009 .

[132]  Domenico Cantone,et al.  On the Decidability of Formulae Involving Continuous and Closed Functions , 1989, IJCAI.

[133]  Calogero G. Zarba,et al.  Combining Sets with Cardinals , 2005, Journal of Automated Reasoning.

[134]  Calogero G. Zarba,et al.  A Tableau-Based Decision Procedure for a Fragment of Set Theory Involving a Restricted Form of Quantification , 1999, TABLEAUX.

[135]  Joseph A. Goguen,et al.  Putting Theories Together to Make Specifications , 1977, IJCAI.

[136]  A Pettorossi Automata theory and formal languages , 2008 .

[137]  A. Tarski,et al.  Sur les ensembles finis , 1924 .

[138]  Robert E. Shostak,et al.  A Practical Decision Procedure for Arithmetic with Function Symbols , 1979, JACM.

[139]  James K. Feibleman Of Symbolic Logic , 1979 .