Pairing gaps from nuclear mean-fieldmo dels

We discuss the pairing gap, a measure for nuclear pairing correlations, in chains of spherical, semi-magic nuclei in the framework of self-consistent nuclear mean-field models. The equations for the conventional BCS model and the approximate projection-before-variation Lipkin-Nogami method are formulated in terms of local density functionals for the effective interaction. We calculate the Lipkin-Nogami corrections of both the mean-field energy and the pairing energy. Various definitions of the pairing gap are discussed as three-point, four-point and five-point mass-difference formulae, averaged matrix elements of the pairing potential, and single-quasiparticle energies. Experimental values for the pairing gap are compared with calculations employing both a delta pairing force and a density-dependent delta interaction in the BCS and Lipkin-Nogami model. Odd-mass nuclei are calculated in the spherical blocking approximation which neglects part of the the core polarization in the odd nucleus. We find that the five-point mass difference formula gives a very robust description of the odd-even staggering, other approximations for the gap may differ from that up to 30% for certain nuclei.

[1]  H. Pradhan,et al.  Study of approximations in the nuclear pairing-force problem , 1973 .

[2]  Berger,et al.  Mean-field description of ground-state properties of drip-line nuclei: Pairing and continuum effects. , 1996, Physical review. C, Nuclear physics.

[3]  W. Nazarewicz,et al.  Equilibrium deformations and excitation energies of single-quasiproton band heads of rare-earth nuclei , 1990 .

[4]  Paul-Gerhard Reinhard,et al.  From sum rules to RPA: 1. Nuclei , 1992 .

[5]  R. Wyss,et al.  The Lipkin-Nogami formalism for the cranked mean field , 1994 .

[6]  S. Fayans,et al.  Isotope shifts within the energy-density functional approach with density dependent pairing☆ , 1994 .

[7]  Joachim A. Maruhn,et al.  Remarks on the numerical solution of Poisson's equation for isolated charge distributions , 1976 .

[8]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[9]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[10]  N. Onishi,et al.  On the Restoration of Symmetry in Paired Fermion Systems , 1997 .

[11]  P. Heenen,et al.  Shape coexistence and low-lying collective states in A ≈ 100 Zr nuclei , 1993 .

[12]  H. J. Mang The self-consistent single-particle model in nuclear physics , 1975 .

[13]  K W Schmid,et al.  Large-scale nuclear structure studies , 1987 .

[14]  M. S. Weiss,et al.  Self-consistent calculation of charge radii of Pb isotopes , 1993 .

[15]  David Pines,et al.  POSSIBLE ANALOGY BETWEEN THE EXCITATION SPECTRA OF NUCLEI AND THOSE OF THE SUPERCONDUCTING METALLIC STATE , 1958 .

[16]  W. Greiner,et al.  Odd nuclei and single-particle spectra in the relativistic mean-field model , 1998 .

[17]  J. Dobaczewski,et al.  Diabatic effects in 186Pb: A generator-coordinate analysis , 1993 .

[18]  S. Fayans,et al.  Towards a better parametrization of the nuclear pairing force: density dependence with gradient term , 1996 .

[19]  Reinhard,et al.  Lipkin-Nogami pairing scheme in self-consistent nuclear structure calculations. , 1996, Physical review. C, Nuclear physics.

[20]  P. Reinhard REVIEW ARTICLE: The relativistic mean-field description of nuclei and nuclear dynamics , 1989 .

[21]  Jacques Treiner,et al.  Hartree-Fock-Bogolyubov description of nuclei near the neutron-drip line , 1984 .

[22]  Dobaczewski,et al.  Time-odd components in the mean field of rotating superdeformed nuclei. , 1995, Physical review. C, Nuclear physics.

[23]  H. Flocard,et al.  Self-Consistent Calculations of Nuclear Properties with Phenomenological Effective Forces , 1978 .

[24]  J. Dobaczewski,et al.  Charge distributions of sup 208 Pb, sup 206 Pb, and sup 205 Tl and the mean-field approximation , 1989 .

[25]  Yukihisa Nogami,et al.  Improved Superconductivity Approximation for the Pairing Interaction in Nuclei , 1964 .

[26]  Closed shells at drip-line nuclei , 1994, nucl-th/9411003.

[27]  Zheng,et al.  Pairing correlations studied in the two-level model. , 1992, Physical review. C, Nuclear physics.

[28]  J. Dechargé,et al.  Hartree-Fock-Bogolyubov calculations with the D 1 effective interaction on spherical nuclei , 1980 .

[29]  L. Cooper,et al.  Theory of superconductivity , 1957 .

[30]  Paul-Gerhard Reinhard,et al.  Comparison of coordinate-space techniques in nuclear mean-field calculations , 1992 .

[31]  L. Robledo,et al.  A new approach to approximate symmetry restoration with density dependent forces: The superdeformed band in 192Hg , 1997 .

[32]  P. Hansen,et al.  New mass relations and two- and four-nucleon correlations , 1984 .

[33]  P. Reinhard,et al.  Pairing gap and polarisation effects , 1999, nucl-th/9910026.

[34]  Wyss,et al.  Coherence of nucleonic motion in superdeformed nuclei: Towards an understanding of identical bands. , 1994, Physical review. C, Nuclear physics.

[35]  Harry J Lipkin,et al.  Collective motion in many-particle systems: Part 1. The violation of conservation laws , 1960 .

[36]  W. Nazarewicz,et al.  ODD-EVEN STAGGERING OF NUCLEAR MASSES : PAIRING OR SHAPE EFFECT? , 1998, nucl-th/9804060.

[37]  Paul-Gerhard Reinhard,et al.  Nuclear effective forces and isotope shifts , 1995 .

[38]  F. Tondeur Pairing with a delta interaction in the energy density nuclear mass formula , 1979 .

[39]  J. Dobaczewski,et al.  Generator-coordinate method for triaxial quadrupole dynamics in Sr isotopes (II).: Results for particle-number-projected states , 1993 .

[40]  W. Nazarewicz,et al.  Shell structure of the superheavy elements , 1996, nucl-th/9608020.

[41]  A. Bohr,et al.  NUCLEAR STRUCTURE. VOLUME I. SINGLE-PARTICLE MOTION. , 1969 .

[42]  P. Bonche,et al.  Superdeformed rotational bands in the mercury region. A cranked Skyrme-Hartree-Fock-Bogoliubov study , 1993, nucl-th/9312011.

[43]  D. Madland,et al.  New model of the average neutron and proton pairing gaps , 1988 .

[44]  M. Bender,et al.  An HFB scheme in natural orbitals , 1997 .

[45]  I. Ragnarsson,et al.  Shapes and shells in nuclear structure , 1995 .

[46]  A. H. Wapstra,et al.  The 1995 update to the atomic mass evaluation , 1995 .

[47]  Nazarewicz,et al.  Comment on "Pairing correlations studied in the two-level model" , 1993, Physical review. C, Nuclear physics.

[48]  P. Möller,et al.  Nuclear pairing models , 1992 .

[49]  J. Dobaczewski,et al.  Superdeformed rotational bands with density dependent pairing interactions , 1995 .

[50]  M. S. Weiss,et al.  An improved pairing interaction for mean field calculations using skyrme potentials , 1990 .

[51]  P. Heenen,et al.  Microscopic study of superdeformation in 193Hg , 1995 .

[52]  R. Wyss,et al.  Blocking effects at super-deformed shape , 1995 .