Effects of Magnesium Doping on Phase Transitions and Dielectric Figure of Merit of Barium Strontium Titanate Ceramics

Ba0.6Sr0.4(Ti1−xMgx)O3 (BSTM) ceramics were prepared by using a solid-state reaction process. X-ray diffraction results indicated that the solubility limit of Mg in Ba0.6Sr0.4TiO3 was about 3 mol%. Doping of Mg into BST led to diffused cubic–tetragonal (C–T) phase transition and reduced Curie temperature. The diffused parameter γ obtained by fitting the modified Curie–Weiss laws increased with increasing Mg content. Dielectric properties of the BSTM ceramics were measured. Figure of merit of BSTM3 was up to 127.8 at 17.5 kV/cm. Its dielectric loss was as low as 0.00133 at 1 kHz and room temperature.

[1]  Jun Du,et al.  Low dielectric loss and enhanced tunable properties of Mn-doped BST/MgO composites , 2010 .

[2]  Qing Xu,et al.  Effect of MgO on structure and nonlinear dielectric properties of Ba0.6Sr0.4TiO3/MgO composite ceramics prepared from superfine powders , 2009 .

[3]  Yen-Lin Huang,et al.  Effects of CuO Doping on the Microstructural and Dielectric Properties of Ba0.6Sr0.4TiO3 Ceramics , 2009 .

[4]  J. Zhai,et al.  Microwave Dielectric Properties and Low‐Temperature Sintering of Ba0.60Sr0.40TiO3 Ceramics , 2009 .

[5]  T. Guo,et al.  Dielectric properties of Fe-doped Ba0.65Sr0.35TiO3 thin films fabricated by the sol–gel method , 2009 .

[6]  H. Chan,et al.  Synthesis of fine-crystalline Ba0.6Sr0.4TiO3–MgO ceramics by novel hybrid processing route , 2009 .

[7]  Hui Yan,et al.  Effect of sintering temperature on dielectric relaxation and Raman scattering of 0.65Pb(Mg1/3Nb2/3)O3−0.35PbTiO3 system , 2009 .

[8]  Huaiwu Zhang,et al.  Preparation and dielectric properties of BST-Mg2TiO4 composite ceramics , 2009 .

[9]  J. Zhai,et al.  Influence of Bi2O3 and CuO addition on low-temperature sintering and dielectric properties of Ba0.6Sr0.4TiO3 ceramics , 2009 .

[10]  J. Zhai,et al.  Dielectric tunable properties of low dielectric constant Ba0.5Sr0.5TiO3–Mg2TiO4 microwave composite ceramics , 2007 .

[11]  Delong Xu,et al.  Dielectric properties Ca-substituted barium strontium titanate ferroelectric ceramics , 2007 .

[12]  Liang-ying Zhang,et al.  Microstructure and Dielectric Properties of Barium Strontium Titanate Thick Films and Ceramics With a Concrete‐Like Structure , 2007 .

[13]  Ying-Chieh Lee,et al.  Microwave dielectric properties and microstructures of Ba2Ti9O20-based ceramics with 3ZnO–B2O3 addition , 2005 .

[14]  B. Su,et al.  Microstructure and dielectric properties of Mg-doped barium strontium titanate ceramics , 2004 .

[15]  M. Ervin,et al.  Low dielectric loss and enhanced tunability of Ba0.6Sr0.4TiO3 based thin films via material compositional design and optimized film processing methods , 2003 .

[16]  Wontae Chang,et al.  MgO-mixed Ba0.6Sr0.4TiO3 bulk ceramics and thin films for tunable microwave applications , 2002 .

[17]  J. Portelles,et al.  Effect of Nb Doping on (Sr,Ba)TiO3 (BST) Ceramic Samples , 2001 .

[18]  J. L. Baptista,et al.  Dielectric properties of bismuth doped Ba1−xSrxTiO3 ceramics , 2001 .

[19]  L. E. Cross,et al.  The glassy behavior of relaxor ferroelectrics , 1991 .

[20]  G. Arlt,et al.  Dielectric properties of fine‐grained barium titanate ceramics , 1985 .

[21]  K. Uchino,et al.  Critical exponents of the dielectric constants in diffused-phase-transition crystals , 1982 .

[22]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[23]  Ying Chen,et al.  Microstructure–Dielectric Properties Relationship in Ba0.6Sr0.4TiO3–Mg2SiO4–Al2O3 Composite Ceramics , 2010 .

[24]  Y. Miyazaki,et al.  High temperature thermoelectric properties of Ca1−xBixMn1−yV yO3−δ (0≤x=y≤0.08) , 2008 .

[25]  B. Su,et al.  Interactions between barium strontium titanate (BST) thick films and alumina substrates , 2001 .