The IllustrisTNG simulations: public data release

[1]  G. Kauffmann,et al.  The abundance, distribution, and physical nature of highly ionized oxygen OVI, OVII, and OVIII in IllustrisTNG , 2021 .

[2]  Annalisa Pillepich,et al.  The ALMA Spectroscopic Survey in the HUDF: the Molecular Gas Content of Galaxies and Tensions with IllustrisTNG and the Santa Cruz SAM , 2019, The Astrophysical Journal.

[3]  Annalisa Pillepich,et al.  The Hubble Sequence at z ∼ 0 in the IllustrisTNG simulation with deep learning , 2019, Monthly Notices of the Royal Astronomical Society.

[4]  V. Springel,et al.  First results from the TNG50 simulation: the evolution of stellar and gaseous discs across cosmic time , 2019, Monthly Notices of the Royal Astronomical Society.

[5]  V. Springel,et al.  First results from the TNG50 simulation: galactic outflows driven by supernovae and black hole feedback , 2019, Monthly Notices of the Royal Astronomical Society.

[6]  D. Narayanan,et al.  simba: Cosmological simulations with black hole growth and feedback , 2019, Monthly Notices of the Royal Astronomical Society.

[7]  V. Springel,et al.  The star formation activity of IllustrisTNG galaxies: main sequence, UVJ diagram, quenched fractions, and systematics , 2018, Monthly Notices of the Royal Astronomical Society.

[8]  V. Springel,et al.  Early-type galaxy density profiles from IllustrisTNG – I. Galaxy correlations and the impact of baryons , 2018, Monthly Notices of the Royal Astronomical Society.

[9]  F. Marinacci,et al.  A Deep Learning Approach to Galaxy Cluster X-Ray Masses , 2018, The Astrophysical Journal.

[10]  V. Springel,et al.  Baryons in the Cosmic Web of IllustrisTNG – I: gas in knots, filaments, sheets, and voids , 2018, Monthly Notices of the Royal Astronomical Society.

[11]  E. Choi,et al.  Linking galaxy structural properties and star formation activity to black hole activity with IllustrisTNG , 2018, Monthly Notices of the Royal Astronomical Society.

[12]  V. Springel,et al.  The evolution of the mass-metallicity relation and its scatter in IllustrisTNG , 2017, Monthly Notices of the Royal Astronomical Society.

[13]  A. Dutton,et al.  A conclusive test for star formation prescriptions in cosmological hydrodynamical simulations. , 2018 .

[14]  R. Teyssier,et al.  Cosmic Dawn II (CoDa II): a new radiation-hydrodynamics simulation of the self-consistent coupling of galaxy formation and reionization , 2018, 1811.11192.

[15]  L. Hernquist,et al.  Atomic hydrogen in IllustrisTNG galaxies: the impact of environment parallelled with local 21-cm surveys , 2018, Monthly Notices of the Royal Astronomical Society.

[16]  Mauricio Solar,et al.  JOVIAL: Notebook-based Astronomical Data Analysis in the Cloud , 2018, Astron. Comput..

[17]  L. Hernquist,et al.  Jellyfish galaxies with the IllustrisTNG simulations – I. Gas-stripping phenomena in the full cosmological context , 2018, Monthly Notices of the Royal Astronomical Society.

[18]  V. Springel,et al.  The optical morphologies of galaxies in the IllustrisTNG simulation: a comparison to Pan-STARRS observations , 2018, Monthly Notices of the Royal Astronomical Society.

[19]  E. Choi,et al.  Linking galaxy structural properties and star formation activity with IllustrisTNG , 2018 .

[20]  A. Sternberg,et al.  Modeling the Atomic-to-molecular Transition in Cosmological Simulations of Galaxy Formation , 2018, The Astrophysical Journal Supplement Series.

[21]  V. Springel,et al.  Formation of a Malin 1 analogue in IllustrisTNG by stimulated accretion , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[22]  C. Faucher-Giguère Recent progress in simulating galaxy formation from the largest to the smallest scales , 2018, Nature Astronomy.

[23]  David N. Spergel,et al.  Ingredients for 21 cm Intensity Mapping , 2018, The Astrophysical Journal.

[24]  Claudio Gheller,et al.  Interactive 3D Visualization for Theoretical Virtual Observatories , 2018, ArXiv.

[25]  A. Pontzen,et al.  TANGOS: The Agile Numerical Galaxy Organization System , 2018, The Astrophysical Journal Supplement Series.

[26]  V. Springel,et al.  The fraction of dark matter within galaxies from the IllustrisTNG simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[27]  R. Teyssier,et al.  The SPHINX Cosmological Simulations of the First Billion Years: the Impact of Binary Stars on Reionization★ , 2018, Monthly Notices of the Royal Astronomical Society.

[28]  L. Kewley,et al.  Chemical pre-processing of cluster galaxies over the past 10 billion years in the IllustrisTNG simulations , 2018, 1801.03500.

[29]  Philip A. Pinto,et al.  The Abacus Cosmos: A Suite of Cosmological N-body Simulations , 2017, The Astrophysical Journal Supplement Series.

[30]  J. Schaye,et al.  Data Release of UV to Submillimeter Broadband Fluxes for Simulated Galaxies from the EAGLE Project , 2017, 1712.05583.

[31]  G. Kauffmann,et al.  The abundance, distribution, and physical nature of highly ionized oxygen O vi, O vii, and O viii in IllustrisTNG , 2017, 1712.00016.

[32]  Annalisa Pillepich,et al.  Similar star formation rate and metallicity variability time-scales drive the fundamental metallicity relation , 2017, 1711.11039.

[33]  Annalisa Pillepich,et al.  A census of cool-core galaxy clusters in IllustrisTNG , 2017, Monthly Notices of the Royal Astronomical Society.

[34]  V. Springel,et al.  Supermassive black holes and their feedback effects in the IllustrisTNG simulation , 2017, Monthly Notices of the Royal Astronomical Society.

[35]  V. Springel,et al.  The size evolution of star-forming and quenched galaxies in the IllustrisTNG simulation , 2017, 1707.05327.

[36]  Cca,et al.  The uniformity and time-invariance of the intra-cluster metal distribution in galaxy clusters from the IllustrisTNG simulations , 2017, 1707.05318.

[37]  G. Kauffmann,et al.  First results from the IllustrisTNG simulations: the galaxy colour bimodality , 2017, 1707.03395.

[38]  Annalisa Pillepich,et al.  First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies , 2017, 1707.03406.

[39]  V. Springel,et al.  First results from the IllustrisTNG simulations: radio haloes and magnetic fields , 2017, Monthly Notices of the Royal Astronomical Society.

[40]  E. Ramirez-Ruiz,et al.  First results from the IllustrisTNG simulations: a tale of two elements - chemical evolution of magnesium and europium , 2017, 1707.03401.

[41]  Cca,et al.  First results from the IllustrisTNG simulations: matter and galaxy clustering , 2017, 1707.03397.

[42]  C. Frenk,et al.  Non-circular motions and the diversity of dwarf galaxy rotation curves , 2017, Monthly Notices of the Royal Astronomical Society.

[43]  Annalisa Pillepich,et al.  Simulating galaxy formation with the IllustrisTNG model , 2017, 1703.02970.

[44]  Paul Torrey,et al.  FIRE-2 simulations: physics versus numerics in galaxy formation , 2017, Monthly Notices of the Royal Astronomical Society.

[45]  J. Comparat,et al.  Skies And Universes: Accessing cosmological simulations and theoretical predictions , 2017, 1711.01453.

[46]  The Eagle team The EAGLE simulations of galaxy formation: Public release of particle data , 2017, 1706.09899.

[47]  F. P. Keenan,et al.  The 2017 release of CLOUDY , 2017, 1705.10877.

[48]  Vanessa Sochat,et al.  Singularity: Scientific containers for mobility of compute , 2017, PloS one.

[49]  Mari Botti,et al.  Barriers and enablers to the implementation of the 6-PACK falls prevention program: A pre-implementation study in hospitals participating in a cluster randomised controlled trial , 2017, PloS one.

[50]  Antonio Ragagnin,et al.  A web portal for hydrodynamical, cosmological simulations , 2016, Astron. Comput..

[51]  Federico Marinacci,et al.  The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time , 2016, 1610.01159.

[52]  V. Springel,et al.  The role of mergers and halo spin in shaping galaxy morphology , 2016, 1609.09498.

[53]  V. Springel,et al.  Angular momentum properties of haloes and their baryon content in the Illustris simulation , 2016, 1608.01323.

[54]  V. Springel,et al.  Simulating galaxy formation with black hole driven thermal and kinetic feedback , 2016, 1607.03486.

[55]  L. Kelley,et al.  Massive Black Hole Binary Mergers in Dynamical Galactic Environments , 2016, 1606.01900.

[56]  Jordan Raddick,et al.  SciServer: An Online Collaborative Environment for Big Data in Research and Education , 2017 .

[57]  Dmitry Medvedev,et al.  SciServer Compute: Bringing Analysis Close to the Data , 2016, SSDBM.

[58]  Michael D. Karcher,et al.  The Romulus cosmological simulations: a physical approach to the formation, dynamics and accretion models of SMBHs , 2016, 1607.02151.

[59]  V. Springel,et al.  Shock finding on a moving-mesh – II. Hydrodynamic shocks in the Illustris universe , 2016, 1604.07401.

[60]  P. Hopkins,et al.  MUFASA: Galaxy Formation Simulations With Meshless Hydrodynamics , 2016, 1604.01418.

[61]  M. Franx,et al.  THE VLT LEGA-C SPECTROSCOPIC SURVEY: THE PHYSICS OF GALAXIES AT A LOOKBACK TIME OF 7 Gyr , 2016, 1603.05479.

[62]  V. Springel,et al.  The stellar mass assembly of galaxies in the Illustris simulation: growth by mergers and the spatial distribution of accreted stars , 2015, 1511.08804.

[63]  Carlos S. Frenk,et al.  The eagle simulations of galaxy formation: Public release of halo and galaxy catalogues , 2015, Astron. Comput..

[64]  Klaus Dolag,et al.  SZ effects in the Magneticum Pathfinder Simulation: Comparison with the Planck, SPT, and ACT results , 2015, 1509.05134.

[65]  V. Springel,et al.  Recoiling black holes: prospects for detection and implications of spin alignment , 2015, 1508.01524.

[66]  N. Battaglia,et al.  The BlueTides simulation: first galaxies and reionization , 2015, 1504.06619.

[67]  Volker Springel,et al.  Improving the convergence properties of the moving-mesh code AREPO , 2015, 1503.00562.

[68]  Alan R. Duffy,et al.  THE THEORETICAL ASTROPHYSICAL OBSERVATORY: CLOUD-BASED MOCK GALAXY CATALOGS , 2014, 1403.5270.

[69]  et al.,et al.  Jupyter Notebooks - a publishing format for reproducible computational workflows , 2016, ELPUB.

[70]  Masakazu A. R. Kobayashi,et al.  The New Numerical Galaxy Catalog ($\nu^2$GC): An Updated Semi-analytic Model of Galaxy and AGN with Large Cosmological N-body Simulation , 2015, 1508.07215.

[71]  Gregory F. Snyder,et al.  The illustris simulation: Public data release , 2015, Astron. Comput..

[72]  G. Stinson,et al.  NIHAO project – I. Reproducing the inefficiency of galaxy formation across cosmic time with a large sample of cosmological hydrodynamical simulations , 2015, 1503.04818.

[73]  S. M. Fall,et al.  GALACTIC ANGULAR MOMENTUM IN THE ILLUSTRIS SIMULATION: FEEDBACK AND THE HUBBLE SEQUENCE , 2015, 1503.01117.

[74]  Rafael S. de Souza,et al.  AMADA - Analysis of multidimensional astronomical datasets , 2015, Astron. Comput..

[75]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[76]  Annalisa Pillepich,et al.  The merger rate of galaxies in the Illustris simulation: a comparison with observations and semi-empirical models , 2015, 1502.01339.

[77]  V. Springel N-GenIC: Cosmological structure initial conditions , 2015 .

[78]  S. White,et al.  The EAGLE simulations of galaxy formation: calibration of subgrid physics and model variations , 2015, 1501.01311.

[79]  M. Fabricius,et al.  THE KMOS3D SURVEY: DESIGN, FIRST RESULTS, AND THE EVOLUTION OF GALAXY KINEMATICS FROM 0.7 ⩽ z ⩽ 2.7 , 2014, 1409.6791.

[80]  Shy Genel,et al.  The Illustris simulation: the evolving population of black holes across cosmic time , 2014, 1408.6842.

[81]  L. Kewley,et al.  The SAMI Galaxy Survey: Instrument specification and target selection , 2014, 1407.7335.

[82]  S. White,et al.  The EAGLE project: Simulating the evolution and assembly of galaxies and their environments , 2014, 1407.7040.

[83]  Volker Springel,et al.  Shock finding on a moving-mesh: I. Shock statistics in non-radiative cosmological simulations , 2014, 1407.4117.

[84]  T. D. Matteo,et al.  The MassiveBlack-II simulation: The evolution of haloes and galaxies to z ~ 0 , 2014, 1402.0888.

[85]  Alison L. Coil,et al.  THE MOSFIRE DEEP EVOLUTION FIELD (MOSDEF) SURVEY: REST-FRAME OPTICAL SPECTROSCOPY FOR ∼1500 H-SELECTED GALAXIES AT 1.37 ≤ z ≤ 3.8 ?> , 2014, 1412.1835.

[86]  Hai Fu,et al.  OVERVIEW OF THE SDSS-IV MaNGA SURVEY: MAPPING NEARBY GALAXIES AT APACHE POINT OBSERVATORY , 2014, 1412.1482.

[87]  D. Foreman-Mackey,et al.  python-fsps: Python bindings to FSPS (v0.1.1) , 2014 .

[88]  Frossie Economou,et al.  The NOAO Data Laboratory: a conceptual overview , 2014, Astronomical Telescopes and Instrumentation.

[89]  E. Ramirez-Ruiz,et al.  THE HISTORY OF R-PROCESS ENRICHMENT IN THE MILKY WAY , 2014, 1407.3796.

[90]  Matthew J. Turk,et al.  Dark Sky Simulations: Early Data Release , 2014, 1407.2600.

[91]  Max Pettini,et al.  STRONG NEBULAR LINE RATIOS IN THE SPECTRA of z ∼ 2–3 STAR FORMING GALAXIES: FIRST RESULTS FROM KBSS-MOSFIRE , 2014, 1405.5473.

[92]  V. Springel,et al.  Introducing the Illustris Project: the evolution of galaxy populations across cosmic time , 2014, 1405.3749.

[93]  V. Springel,et al.  Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe , 2014, 1405.2921.

[94]  V. Springel,et al.  Properties of galaxies reproduced by a hydrodynamic simulation , 2014, Nature.

[95]  Dirk Merkel,et al.  Docker: lightweight Linux containers for consistent development and deployment , 2014 .

[96]  M. Louys,et al.  IVOA Recommendation: Simulation Data Model , 2014, 1402.4744.

[97]  J. Cardoso,et al.  Dancing in the dark: galactic properties trace spin swings along the cosmic web , 2014, 1402.1165.

[98]  G. Zamorani,et al.  THE SINS/zC-SINF SURVEY OF z ∼ 2 GALAXY KINEMATICS: EVIDENCE FOR GRAVITATIONAL QUENCHING , 2013, 1310.3838.

[99]  V. Springel,et al.  A model for cosmological simulations of galaxy formation physics: multi-epoch validation , 2013, 1305.4931.

[100]  Lars Hernquist,et al.  Following the flow: tracer particles in astrophysical fluid simulations , 2013, 1305.2195.

[101]  Yi Wang,et al.  Supporting a Light-Weight Data Management Layer over HDF5 , 2013, 2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing.

[102]  V. Springel,et al.  Simulations of magnetic fields in isolated disc galaxies , 2012, 1212.1452.

[103]  E. Bertin,et al.  The Millennium Run Observatory: first light , 2012, 1206.6923.

[104]  Arie Shoshani,et al.  Parallel I/O, analysis, and visualization of a trillion particle simulation , 2012, 2012 International Conference for High Performance Computing, Networking, Storage and Analysis.

[105]  Garth D. Illingworth,et al.  3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE HUBBLE SPACE TELESCOPE , 2012, 1204.2829.

[106]  A. Quirrenbach,et al.  CALIFA, the Calar Alto Legacy Integral Field Area survey : I. Survey presentation , 2011, 1111.0962.

[107]  Risa H. Wechsler,et al.  GRAVITATIONALLY CONSISTENT HALO CATALOGS AND MERGER TREES FOR PRECISION COSMOLOGY , 2011, 1110.4370.

[108]  Kesheng Wu,et al.  FastQuery: A Parallel Indexing System for Scientific Data , 2011, 2011 IEEE International Conference on Cluster Computing.

[109]  Kristin Riebe,et al.  The MultiDark Database: Release of the Bolshoi and MultiDark Cosmological Simulations , 2011, ArXiv.

[110]  Andreas Bauer,et al.  Magnetohydrodynamics on an unstructured moving grid , 2011, 1108.1792.

[111]  Robert J. Thacker,et al.  Peaks above the Maxwellian Sea: a new approach to finding substructures in N-body haloes , 2011, 1107.4289.

[112]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[113]  Q. Guo From Dwarf Spheroidals to cDs: Simulating the Full Galaxy Population in a LCDM Cosmology , 2011 .

[114]  G. Kauffmann,et al.  Erratum: From dwarf spheroidals to cD galaxies: simulating the galaxy population in a ΛCDM cosmology , 2010, 1006.0106.

[115]  V. Boucher,et al.  Introducing the Dark Energy Universe Simulation Series (DEUSS) , 2010, 1002.4950.

[116]  A. Klypin,et al.  DARK MATTER HALOS IN THE STANDARD COSMOLOGICAL MODEL: RESULTS FROM THE BOLSHOI SIMULATION , 2010, 1002.3660.

[117]  J. Gunn,et al.  THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING. III. MODEL CALIBRATION, COMPARISON, AND EVALUATION , 2009, 0911.3151.

[118]  F. Castander,et al.  Simulating the Universe with MICE: The abundance of massive clusters , 2009, 0907.0019.

[119]  V. Springel E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh , 2009, 0901.4107.

[120]  R. Maiolino,et al.  The evolution of the mass‐metallicity relation , 2009 .

[121]  Volker Springel,et al.  Resolving cosmic structure formation with the Millennium-II simulation , 2009, 0903.3041.

[122]  M. Zaldarriaga,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 A NEW CALCULATION OF THE IONIZING BACKGROUND SPECTRUM AND THE EFFECTS OF HEII REIONIZATION , 2022 .

[123]  Gerard Lemson,et al.  Theory in the virtual observatory , 2009 .

[124]  J. Gunn,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING I: THE RELEVANCE OF UNCERTAIN ASPECTS OF STELLAR EVOLUTION AND THE IMF TO THE DERIVED PHYSICAL PR , 2022 .

[125]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[126]  G. Lemson,et al.  Halo and Galaxy Formation Histories from the Millennium Simulation: Public release of a VO-oriented and SQL-queryable database for studying the evolution of galaxies in the LambdaCDM cosmogony , 2006, astro-ph/0608019.

[127]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[128]  T. D. Matteo,et al.  Modelling feedback from stars and black holes in galaxy mergers , 2004, astro-ph/0411108.

[129]  Alexander S. Szalay,et al.  Petabyte Scale Data Mining: Dream or Reality? , 2002, SPIE Astronomical Telescopes + Instrumentation.

[130]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.

[131]  Peter Z. Kunszt,et al.  Data Mining the SDSS SkyServer Database , 2002, WDAS.

[132]  Peter Z. Kunszt,et al.  The SDSS skyserver: public access to the sloan digital sky server data , 2001, SIGMOD '02.

[133]  Padova,et al.  Populating a cluster of galaxies - I. Results at z=0 , 2000, astro-ph/0012055.

[134]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[135]  Roy Fielding,et al.  Architectural Styles and the Design of Network-based Software Architectures"; Doctoral dissertation , 2000 .

[136]  A. Szalay,et al.  The Sloan Digital Sky Survey1 and its Archive , 1999, astro-ph/9912382.

[137]  Neal Katz,et al.  Galaxies and Gas in a Cold Dark Matter Universe , 1992 .

[138]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[139]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .