On the limit of a supercritical branching process

Let W be the usual almost-sure limit random variable in a supercritical simple branching process; we study its tail behaviour. For the left tail, we distinguish two cases, the 'Schroder' and 'B6ttcher' cases; both appear in work of Harris and Dubuc. The Schr6der case is related to work of Karlin and McGregor on embeddability in continuous-time (Markov) branching processes. New results are obtained for the B6ttcher case; there are links with recent work of Barlow and Perkins on Brownian motion on a fractal. The right tail is also considered. Use is made of recent progress in Tauberian theory.

[1]  N. H. Bingham,et al.  Continuous branching processes and spectral positivity , 1976 .

[2]  S. Karlin,et al.  Embedding iterates of analytic functions with two fixed points into continuous groups , 1968 .

[3]  Y. Kasahara Tauberian theorems of exponential type , 1978 .

[4]  S. Karlin,et al.  Embeddability of discrete time simple branching processes into continuous time branching processes , 1968 .

[5]  C. C. Heyde,et al.  EXTENSION OF A RESULT OF SENETA FOR THE SUPER-CRITICAL GALTON-WATSON PROCESS , 1970 .

[6]  de Ng Dick Bruijn Pairs of slowly oscillating functions occurring in asymptotic problems concerning the Laplace transform. , 1959 .

[7]  J. Biggins,et al.  Some divisibility problems in branching processes , 1981, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  S. Dubuc étude théorique et numérique de la fonction de Karlin-McGregor , 1982 .

[9]  S. Goldstein Random Walks and Diffusions on Fractals , 1987 .

[10]  U. Stadtmüller,et al.  DOMINATED VARIATION AND RELATED CONCEPTS AND TAUBERIAN-THEOREMS FOR LAPLACE TRANSFORMS , 1985 .

[11]  T. E. Harris,et al.  The Theory of Branching Processes. , 1963 .

[12]  N. Bingham,et al.  Asymptotic properties of supercritical branching processes I: The Galton-Watson process , 1974, Advances in Applied Probability.

[13]  M. Serge Dubuc,et al.  La densité de la loi-limite d'un processus en cascade expansif , 1971 .

[14]  D. R. Grey,et al.  A New Look at Convergence of Branching Processes , 1980 .

[15]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[16]  D. Grey Two necessary conditions for embeddability of a Galton–Watson branching process , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.

[17]  M. Kuczma Functional equations in a single variable , 1968 .

[18]  P. Montel,et al.  Leçons sur les récurrences et leurs applications , 1958 .

[19]  Martin T. Barlow,et al.  Brownian motion on the Sierpinski gasket , 1988 .

[20]  S. Dubuc Problèmes relatifs à l'itération de fonctions suggérés par les processus en cascade , 1971 .

[21]  E. Seneta On Recent Theorems Concerning the Supercritical Galton-Watson Process , 1968 .

[22]  P. Levy Théorie de l'addition des variables aléatoires , 1955 .

[23]  K. Falconer The geometry of fractal sets , 1985 .

[24]  E. Seneta,et al.  Functional equations and the Galton-Watson process , 1969, Advances in Applied Probability.

[25]  George Szekeres,et al.  Regular iteration of real and complex functions , 1958 .