A family of identities related to zero-sum and team games

We list and prove a family of binomial identities by calculating in two ways the probabilities of approximate saddlepoints occurring in random mxn matrices. The identities are easily seen to be equivalent to the evaluation of a family of Gauss 2F1 polynomials according to a formula of Vandermonde. We also consider some implications concerning the number of approximate pure strategy Nash equilibria we can expect in large matrix zero-sum and team games.