Multi-Disciplinary Engineering for Industrie 4.0: Semantic Challenges and Needs

This chapter introduces key concepts of the Industrie 4.0 vision, focusing on variability issues in traditional and cyber-physical production systems (CPPS) and their engineering processes. Four usage scenarios illustrate key challenges of system engineers and managers in the transition from traditional to CPPS engineering environments. We derive needs for semantic support from the usage scenarios as a foundation for evaluating solution approaches and discuss Semantic Web capabilities to address the identified multidisciplinary engineering needs. We compare the strengths and limitations of Semantic Web capabilities to alternative solution approaches in practice. Semantic Web technologies seem to be a very good match for addressing the aspects of heterogeneity in engineering due to their capability to integrate data intelligently and flexibly on a large scale. Engineers and managers from engineering domains can use the scenarios to select and adopt appropriate Semantic Web solutions in their own settings.

[1]  Josef Binder,et al.  Innovation durch Interdisziplinarität: Beispiele aus der Industriellen Automatisierung , 2012 .

[2]  Jürgen Beyerer,et al.  PPRS: Production skills and their relation to product, process, and resource , 2013, 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA).

[3]  Andreas Bartels,et al.  Knowledge and representation , 2011 .

[4]  Daniel Oberle,et al.  Ontologies and Reasoning in Enterprise Service Ecosystems , 2014, Informatik-Spektrum.

[5]  Arndt Lüder,et al.  Engineering of manufacturing systems within engineering networks , 2010, 2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010).

[6]  J. Gausemeier,et al.  Die neue Richtlinie VDI 2206: Entwicklungsmethodik für mechatronische Systeme , 2003 .

[7]  Karl T. Ulrich,et al.  Product Design and Development , 1995 .

[8]  Stefan Biffl,et al.  Anforderungsanalyse für das integrierte Engineering , 2012 .

[9]  Nasser Jazdi,et al.  Mehr Systematik für den Anlagenbau und das industrielle Lösungsgeschäft — Gesteigerte Effizienz durch Domain Engineering , 2010, Autom..

[10]  Eckehard Schnieder,et al.  Methoden der Automatisierung , 1999 .

[11]  Rainer Drath,et al.  An evolutionary approach for the industrial introduction of virtual commissioning , 2008, 2008 IEEE International Conference on Emerging Technologies and Factory Automation.

[12]  Matthias Foehr,et al.  Engineering process evaluation: Evaluation of the impact of internationalisation decisions on the efficiency and quality of engineering processes , 2013, 2013 IEEE International Symposium on Industrial Electronics.

[13]  Matthias Foehr,et al.  Aggregation of engineering processes regarding the mechatronic approach , 2011, ETFA2011.

[14]  Tullio Tolio,et al.  Focused Flexibility in Production Systems , 2009 .

[15]  Thomas Wagner,et al.  Manufacturing system engineering with mechatronical units , 2010, 2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010).

[16]  A. Lüder,et al.  Integration des Menschen in Szenarien der Industrie 4.0 , 2014 .