Monolithic integration of InGaN segments emitting in the blue, green, and red spectral range in single ordered nanocolumns

This work reports on the selective area growth by plasma-assisted molecular beam epitaxy and characterization of InGaN/GaN nanocolumnar heterostructures. The optimization of the In/Ga and total III/V ratios, as well as the growth temperature, provides control on the emission wavelength, either in the blue, green, or red spectral range. An adequate structure tailoring and monolithic integration in a single nanocolumnar heterostructure of three InGaN portions emitting in the red-green-blue colors lead to white light emission.

[1]  F. Calle,et al.  Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy , 2000 .

[2]  H. Lüth,et al.  GaN-nanowhiskers: MBE-growth conditions and optical properties , 2006 .

[3]  James S. Speck,et al.  A growth diagram for plasma-assisted molecular beam epitaxy of In-face InN , 2007 .

[4]  Hiroto Sekiguchi,et al.  Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate , 2010 .

[5]  Hiroto Sekiguchi,et al.  InGaN/GaN nanocolumn LEDs emitting from blue to red , 2007, SPIE OPTO.

[6]  P. Lefebvre,et al.  Selective area growth and characterization of InGaN nano-disks implemented in GaN nanocolumns with different top morphologies , 2012 .

[7]  Fong Kwong Yam,et al.  InGaN: An overview of the growth kinetics, physical properties and emission mechanisms , 2008 .

[8]  Katsumi Kishino,et al.  Monolithic Integration of InGaN-Based Nanocolumn Light-Emitting Diodes with Different Emission Colors , 2012 .

[9]  Hiroto Sekiguchi,et al.  Ti-mask Selective-Area Growth of GaN by RF-Plasma-Assisted Molecular-Beam Epitaxy for Fabricating Regularly Arranged InGaN/GaN Nanocolumns , 2008 .

[10]  Le Si Dang,et al.  Submicrometre resolved optical characterization of green nanowire-based light emitting diodes , 2011, Nanotechnology.

[11]  Wladek Walukiewicz,et al.  Band gaps of InN and group III nitride alloys , 2003 .

[12]  G A Botton,et al.  p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111). , 2011, Nano letters.

[13]  Hiroto Sekiguchi,et al.  Improved Ti-mask selective-area growth (SAG) by rf-plasma-assisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays , 2009 .

[14]  Achim Trampert,et al.  Understanding the selective area growth of GaN nanocolumns by MBE using Ti nanomasks , 2011 .

[15]  J. Grandal,et al.  A growth diagram for plasma-assisted molecular beam epitaxy of GaN nanocolumns on Si(111) , 2009, 2401.16328.

[16]  J. Zúñiga-Pérez,et al.  Selective area growth of a- and c-plane GaN nanocolumns by molecular beam epitaxy using colloidal nanolithography , 2012 .

[17]  M. Mori,et al.  Growth of Self-Organized GaN Nanostructures on Al2O3(0001) by RF-Radical Source Molecular Beam Epitaxy , 1997 .

[18]  S. Gwo,et al.  InGaN/GaN nanorod array white light-emitting diode , 2010 .

[19]  Dejun Fu,et al.  Photoluminescence studies of GaN nanorods on Si (111) substrates grown by molecular-beam epitaxy , 2004 .

[20]  P. Bhattacharya,et al.  Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy. , 2010, Nano letters.

[21]  P. Lefebvre,et al.  Emission control of InGaN nanocolumns grown by molecular-beam epitaxy on Si(111) substrates , 2011 .

[22]  James S. Speck,et al.  Control of GaN surface morphologies using plasma-assisted molecular beam epitaxy , 2000 .

[23]  S. Aloni,et al.  Complete composition tunability of InGaN nanowires using a combinatorial approach. , 2007, Nature materials.

[24]  C. Bougerol,et al.  Structural and optical properties of InGaN/GaN nanowire heterostructures grown by PA-MBE , 2011, Nanotechnology.

[25]  M. Sánchez-García,et al.  Plasmon excitation in electron energy-loss spectroscopy for determination of indium concentration in (In,Ga)N/GaN nanowires , 2012, Nanotechnology.

[26]  Maria R. Correia,et al.  Compositional pulling effects in InxGa1-x N/GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study , 2001 .

[27]  H. Lüth,et al.  The state of strain in single GaN nanocolumns as derived from micro-photoluminescence measurements. , 2006, Nano letters.