Monolithic integration of InGaN segments emitting in the blue, green, and red spectral range in single ordered nanocolumns
暂无分享,去创建一个
Achim Trampert | Enrique Calleja | X. Kong | M. Sánchez-García | E. Calleja | A. Trampert | X. Kong | S. Albert | A. Bengoechea-Encabo | M. A. Sanchez-Garcia | Ana Bengoechea-Encabo | Steven Albert
[1] F. Calle,et al. Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy , 2000 .
[2] H. Lüth,et al. GaN-nanowhiskers: MBE-growth conditions and optical properties , 2006 .
[3] James S. Speck,et al. A growth diagram for plasma-assisted molecular beam epitaxy of In-face InN , 2007 .
[4] Hiroto Sekiguchi,et al. Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate , 2010 .
[5] Hiroto Sekiguchi,et al. InGaN/GaN nanocolumn LEDs emitting from blue to red , 2007, SPIE OPTO.
[6] P. Lefebvre,et al. Selective area growth and characterization of InGaN nano-disks implemented in GaN nanocolumns with different top morphologies , 2012 .
[7] Fong Kwong Yam,et al. InGaN: An overview of the growth kinetics, physical properties and emission mechanisms , 2008 .
[8] Katsumi Kishino,et al. Monolithic Integration of InGaN-Based Nanocolumn Light-Emitting Diodes with Different Emission Colors , 2012 .
[9] Hiroto Sekiguchi,et al. Ti-mask Selective-Area Growth of GaN by RF-Plasma-Assisted Molecular-Beam Epitaxy for Fabricating Regularly Arranged InGaN/GaN Nanocolumns , 2008 .
[10] Le Si Dang,et al. Submicrometre resolved optical characterization of green nanowire-based light emitting diodes , 2011, Nanotechnology.
[11] Wladek Walukiewicz,et al. Band gaps of InN and group III nitride alloys , 2003 .
[12] G A Botton,et al. p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111). , 2011, Nano letters.
[13] Hiroto Sekiguchi,et al. Improved Ti-mask selective-area growth (SAG) by rf-plasma-assisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays , 2009 .
[14] Achim Trampert,et al. Understanding the selective area growth of GaN nanocolumns by MBE using Ti nanomasks , 2011 .
[15] J. Grandal,et al. A growth diagram for plasma-assisted molecular beam epitaxy of GaN nanocolumns on Si(111) , 2009, 2401.16328.
[16] J. Zúñiga-Pérez,et al. Selective area growth of a- and c-plane GaN nanocolumns by molecular beam epitaxy using colloidal nanolithography , 2012 .
[17] M. Mori,et al. Growth of Self-Organized GaN Nanostructures on Al2O3(0001) by RF-Radical Source Molecular Beam Epitaxy , 1997 .
[18] S. Gwo,et al. InGaN/GaN nanorod array white light-emitting diode , 2010 .
[19] Dejun Fu,et al. Photoluminescence studies of GaN nanorods on Si (111) substrates grown by molecular-beam epitaxy , 2004 .
[20] P. Bhattacharya,et al. Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy. , 2010, Nano letters.
[21] P. Lefebvre,et al. Emission control of InGaN nanocolumns grown by molecular-beam epitaxy on Si(111) substrates , 2011 .
[22] James S. Speck,et al. Control of GaN surface morphologies using plasma-assisted molecular beam epitaxy , 2000 .
[23] S. Aloni,et al. Complete composition tunability of InGaN nanowires using a combinatorial approach. , 2007, Nature materials.
[24] C. Bougerol,et al. Structural and optical properties of InGaN/GaN nanowire heterostructures grown by PA-MBE , 2011, Nanotechnology.
[25] M. Sánchez-García,et al. Plasmon excitation in electron energy-loss spectroscopy for determination of indium concentration in (In,Ga)N/GaN nanowires , 2012, Nanotechnology.
[26] Maria R. Correia,et al. Compositional pulling effects in InxGa1-x N/GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study , 2001 .
[27] H. Lüth,et al. The state of strain in single GaN nanocolumns as derived from micro-photoluminescence measurements. , 2006, Nano letters.