Single-Cell Optogenetic Excitation Drives Homeostatic Synaptic Depression

[1]  E. Kandel,et al.  Electrophysiology of hippocampal neurons. II. After-potentials and repetitive firing. , 1961, Journal of neurophysiology.

[2]  A. Scheibel,et al.  The Hippocampal‐Dentate Complex in Temporal Lobe Epilepsy , 1974, Epilepsia.

[3]  P. Schwartzkroin,et al.  Electrophysiology of Hippocampal Neurons , 1987 .

[4]  R. Tsien,et al.  Multiple types of neuronal calcium channels and their selective modulation , 1988, Trends in Neurosciences.

[5]  William A. Catterall,et al.  Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons , 1990, Nature.

[6]  A. Aertsen,et al.  Morphological organization of rat hippocampal slice cultures , 1991, The Journal of comparative neurology.

[7]  T. Murphy,et al.  L-type voltage-sensitive calcium channels mediate synaptic activation of immediate early genes , 1991, Neuron.

[8]  R. Malinow,et al.  The probability of transmitter release at a mammalian central synapse , 1993, Nature.

[9]  R. Nicoll,et al.  Modulation of synaptic transmission and long-term potentiation: effects on paired pulse facilitation and EPSC variance in the CA1 region of the hippocampus. , 1993, Journal of neurophysiology.

[10]  S. Vincent,et al.  Structure and functional expression of a member of the low voltage-activated calcium channel family. , 1993, Science.

[11]  T. Otis Lasting potentiation of inhibition is associated with an increased number of GABA_A receptors activated during miniature inhibitory postsynaptic currents , 1994 .

[12]  E. Marder,et al.  Activity-dependent changes in the intrinsic properties of cultured neurons. , 1994, Science.

[13]  I. Módy,et al.  Lasting potentiation of inhibition is associated with an increased number of gamma-aminobutyric acid type A receptors activated during miniature inhibitory postsynaptic currents. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[14]  A. Ishida,et al.  A novel highly specific and potent inhibitor of calmodulin-dependent protein kinase II. , 1995, Biochemical and biophysical research communications.

[15]  D. Johnston,et al.  Dihydropyridine-sensitive, voltage-gated Ca2+ channels contribute to the resting intracellular Ca2+ concentration of hippocampal CA1 pyramidal neurons. , 1996, Journal of neurophysiology.

[16]  T. Soderling,et al.  Regulation of mitogen-activated protein kinases by a calcium/calmodulin-dependent protein kinase cascade. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[17]  J. Engel,et al.  Glutamate currents in morphologically identified human dentate granule cells in temporal lobe epilepsy. , 1997, Journal of neurophysiology.

[18]  Ann Marie Craig,et al.  Activity Regulates the Synaptic Localization of the NMDA Receptor in Hippocampal Neurons , 1997, Neuron.

[19]  T. Soderling,et al.  Characterization of a calmodulin kinase II inhibitor protein in brain. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Niraj S. Desai,et al.  Activity-dependent scaling of quantal amplitude in neocortical neurons , 1998, Nature.

[21]  R. Huganir,et al.  Activity-Dependent Modulation of Synaptic AMPA Receptor Accumulation , 1998, Neuron.

[22]  R. Yuste,et al.  Linear Summation of Excitatory Inputs by CA1 Pyramidal Neurons , 1999, Neuron.

[23]  K. Harris,et al.  Dendrites are more spiny on mature hippocampal neurons when synapses are inactivated , 1999, Nature Neuroscience.

[24]  Niraj S. Desai,et al.  Plasticity in the intrinsic excitability of cortical pyramidal neurons , 1999, Nature Neuroscience.

[25]  W. Wadman,et al.  Miniature inhibitory postsynaptic currents in CA1 pyramidal neurons after kindling epileptogenesis. , 1999, Journal of neurophysiology.

[26]  M. V. Rossum,et al.  Activity Coregulates Quantal AMPA and NMDA Currents at Neocortical Synapses , 2000, Neuron.

[27]  J. Schiller,et al.  NMDA spikes in basal dendrites of cortical pyramidal neurons , 2000, Nature.

[28]  S. Nelson,et al.  Hebb and homeostasis in neuronal plasticity , 2000, Current Opinion in Neurobiology.

[29]  J. Swann,et al.  Spine loss and other dendritic abnormalities in epilepsy , 2000, Hippocampus.

[30]  G. Buzsáki,et al.  Temporal Interaction between Single Spikes and Complex Spike Bursts in Hippocampal Pyramidal Cells , 2001, Neuron.

[31]  K. Deisseroth,et al.  Activity-dependent CREB phosphorylation: Convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[32]  T. Schikorski,et al.  Inactivity Produces Increases in Neurotransmitter Release and Synapse Size , 2001, Neuron.

[33]  R. Dolmetsch,et al.  Signaling to the Nucleus by an L-type Calcium Channel-Calmodulin Complex Through the MAP Kinase Pathway , 2001, Science.

[34]  I. Song,et al.  Regulation of AMPA receptors during synaptic plasticity , 2002, Trends in Neurosciences.

[35]  J. Lisman,et al.  The molecular basis of CaMKII function in synaptic and behavioural memory , 2002, Nature Reviews Neuroscience.

[36]  R. Tsien,et al.  alpha- and betaCaMKII. Inverse regulation by neuronal activity and opposing effects on synaptic strength. , 2002, Neuron.

[37]  Jozsef Csicsvari,et al.  Homeostatic maintenance of neuronal excitability by burst discharges in vivo. , 2002, Cerebral cortex.

[38]  V. Murthy,et al.  Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons , 2002, Nature.

[39]  R. Tsien,et al.  α- and βCaMKII Inverse Regulation by Neuronal Activity and Opposing Effects on Synaptic Strength , 2002, Neuron.

[40]  Yu Zhang,et al.  Synaptic Transmission and Plasticity in the Absence of AMPA Glutamate Receptor GluR2 and GluR3 , 2003, Neuron.

[41]  H. Tokumitsu,et al.  A single amino acid difference between alpha and beta Ca2+/calmodulin-dependent protein kinase kinase dictates sensitivity to the specific inhibitor, STO-609. , 2003, The Journal of biological chemistry.

[42]  M. Ehlers,et al.  Activity-Dependent mRNA Splicing Controls ER Export and Synaptic Delivery of NMDA Receptors , 2003, Neuron.

[43]  V. Murthy,et al.  Synaptic gain control and homeostasis , 2003, Current Opinion in Neurobiology.

[44]  R. Nicoll,et al.  AMPA Receptor Trafficking at Excitatory Synapses , 2003, Neuron.

[45]  H. Tokumitsu,et al.  A Single Amino Acid Difference between α and β Ca2+/Calmodulin-dependent Protein Kinase Kinase Dictates Sensitivity to the Specific Inhibitor, STO-609* , 2003, The Journal of Biological Chemistry.

[46]  C. Goodman,et al.  Retrograde Control of Synaptic Transmission by Postsynaptic CaMKII at the Drosophila Neuromuscular Junction , 2003, Neuron.

[47]  E. Bamberg,et al.  Channelrhodopsin-2, a directly light-gated cation-selective membrane channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[48]  L. Moreland Mitogen-activated protein kinase pathway , 2004 .

[49]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[50]  Wade Morishita,et al.  Generation of Silent Synapses by Acute In Vivo Expression of CaMKIV and CREB , 2005, Neuron.

[51]  R. Tsien,et al.  Adaptation to Synaptic Inactivity in Hippocampal Neurons , 2005, Neuron.

[52]  C. A. Frank,et al.  Mechanisms Underlying the Rapid Induction and Sustained Expression of Synaptic Homeostasis , 2006, Neuron.

[53]  R. Malenka,et al.  Synaptic scaling mediated by glial TNF-α , 2006, Nature.

[54]  T. Soderling,et al.  Activity-Dependent Dendritic Arborization Mediated by CaM-Kinase I Activation and Enhanced CREB-Dependent Transcription of Wnt-2 , 2006, Neuron.

[55]  Jing Wu,et al.  Arc/Arg3.1 Mediates Homeostatic Synaptic Scaling of AMPA Receptors , 2006, Neuron.

[56]  R. Malenka,et al.  Synaptic scaling mediated by glial TNF-alpha. , 2006, Nature.

[57]  Juan Burrone,et al.  Activity-dependent regulation of inhibitory synaptic transmission in hippocampal neurons , 2006, Nature Neuroscience.

[58]  G. Davis Homeostatic control of neural activity: from phenomenology to molecular design. , 2006, Annual review of neuroscience.

[59]  H. Okuno,et al.  Regulation of Dendritogenesis via a Lipid-Raft-Associated Ca2+/Calmodulin-Dependent Protein Kinase CLICK-III/CaMKIγ , 2007, Neuron.

[60]  J. Lisman,et al.  Reversal of Synaptic Memory by Ca2+/Calmodulin-Dependent Protein Kinase II Inhibitor , 2007, The Journal of Neuroscience.

[61]  G. Davis,et al.  The BMP Ligand Gbb Gates the Expression of Synaptic Homeostasis Independent of Synaptic Growth Control , 2007, Neuron.

[62]  T. Oertner,et al.  Optical induction of synaptic plasticity using a light-sensitive channel , 2007, Nature Methods.

[63]  Roger A. Nicoll,et al.  Rapid Bidirectional Switching of Synaptic NMDA Receptors , 2007, Neuron.

[64]  G. Turrigiano,et al.  Rapid Synaptic Scaling Induced by Changes in Postsynaptic Firing , 2008, Neuron.

[65]  G. Turrigiano The Self-Tuning Neuron: Synaptic Scaling of Excitatory Synapses , 2008, Cell.

[66]  M. Sheng,et al.  Critical Role of CDK5 and Polo-like Kinase 2 in Homeostatic Synaptic Plasticity during Elevated Activity , 2008, Neuron.

[67]  Lu Chen,et al.  Synaptic Signaling by All-Trans Retinoic Acid in Homeostatic Synaptic Plasticity , 2008, Neuron.

[68]  T. Branco,et al.  Local Dendritic Activity Sets Release Probability at Hippocampal Synapses , 2008, Neuron.

[69]  Omar J. Ahmed,et al.  The hippocampal rate code: anatomy, physiology and theory , 2009, Trends in Neurosciences.

[70]  D. Dickman,et al.  The Schizophrenia Susceptibility Gene dysbindin Controls Synaptic Homeostasis , 2009, Science.

[71]  C. A. Frank,et al.  A Presynaptic Homeostatic Signaling System Composed of the Eph Receptor, Ephexin, Cdc42, and CaV2.1 Calcium Channels , 2009, Neuron.

[72]  G. Turrigiano,et al.  Synaptic Scaling Requires the GluR2 Subunit of the AMPA Receptor , 2009, The Journal of Neuroscience.

[73]  H. Okuno,et al.  Control of Cortical Axon Elongation by a GABA-Driven Ca2+/Calmodulin-Dependent Protein Kinase Cascade , 2009, The Journal of Neuroscience.

[74]  Marc Tessier-Lavigne,et al.  APP binds DR6 to trigger axon pruning and neuron death via distinct caspases , 2009, Nature.

[75]  Alcino J. Silva,et al.  Calmodulin-Kinases: Modulators of Neuronal Development and Plasticity , 2009, Neuron.

[76]  M. Grubb,et al.  Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability , 2010, Nature.