Stress induced effects on piezoelectric polycrystalline potassium sodium niobate thin films

This work reports a systematical study highlighting the impact of substrate induced stress as a key parameter for the electrical performance and phase transition temperatures of (K,Na)NbO3 polycrystalline thin films.

[1]  R. Bertacco,et al.  Effect of substrate preparation on the growth of lead-free piezoelectric (K0.5Na0.5)NbO3 on Pt(111) , 2021 .

[2]  J. A. Moreira,et al.  Revisiting the phase sequence and properties of K0.5Na0.5NbO3 ceramics sintered by different processes , 2020 .

[3]  I. Reaney,et al.  Spark plasma texturing: A strategy to enhance the electro-mechanical properties of lead-free potassium sodium niobate ceramics , 2020, Applied Materials Today.

[4]  T. Grande,et al.  Ferroelectric and dielectric properties of Ca2+-doped and Ca2+–Ti4+ co-doped K0.5Na0.5NbO3 thin films , 2020 .

[5]  P. Vilarinho,et al.  Strain-Mediated Substrate Effect on the Dielectric and Ferroelectric Response of Potassium Sodium Niobate Thin Films , 2018, Coatings.

[6]  Dragan Damjanovic,et al.  Strain generation and energy-conversion mechanisms in lead-based and lead-free piezoceramics , 2018, MRS Bulletin.

[7]  I. Reaney,et al.  Mechanical strain engineering of dielectric tunability in polycrystalline SrTiO3 thin films , 2018 .

[8]  Suyoung Yang,et al.  Flexible highly-effective energy harvester via crystallographic and computational control of nanointerfacial morphotropic piezoelectric thin film , 2017, Nano Research.

[9]  Diego A. Ochoa Guerrero,et al.  Effect of lanthanide doping on structural, microstructural and functional properties of K0.5Na0.5NbO3 lead-free piezoceramics , 2016 .

[10]  Joonhee Lee,et al.  Lead-free Mn-doped (K0.5,Na0.5)NbO3 piezoelectric thin films for MEMS-based vibrational energy harvester applications , 2016 .

[11]  M. Dekkers,et al.  Lead-free (K0.5Na0.5)NbO3 thin films by pulsed laser deposition driving MEMS-based piezoelectric cantilevers , 2016 .

[12]  R. Ben-Mrad,et al.  Fabrication of Lead-Free Piezoelectric (K, Na)NbO3 Thin Film on Nickel-Based Electrodes , 2016, Journal of Microelectromechanical Systems.

[13]  K. Uchino Glory of piezoelectric perovskites , 2015, Science and technology of advanced materials.

[14]  Kyle G. Webber,et al.  Transferring lead-free piezoelectric ceramics into application , 2015 .

[15]  P. Vilarinho,et al.  Impedance Analysis and Conduction Mechanisms of Lead Free Potassium Sodium Niobate (KNN) Single Crystals and Polycrystals: A Comparison Study , 2015 .

[16]  M. N. Rafiq,et al.  Structure, Dielectric and Impedance Studies of Li Doped (K0.5Na0.5)NbO3 Ceramics , 2014 .

[17]  Jingfeng Li,et al.  Determination of crystallographic orientation of lead-free piezoelectric (K,Na)NbO3 epitaxial thin films grown on SrTiO3 (100) surfaces , 2014 .

[18]  P. Vilarinho,et al.  Establishing the Domain Structure of (K 0 5 Na 0 5 )NbO 3 (KNN) Single Crystals by Piezoforce-Response Microscopy , 2014 .

[19]  Ke Wang,et al.  (K, Na)NbO3‐Based Lead‐Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges , 2013 .

[20]  A. Kulkarni,et al.  Structure composition correlation in KNN–BT ceramics – An X-ray diffraction and Raman spectroscopic investigation , 2013 .

[21]  D. Remiens,et al.  Influence of LNO Top Electrodes on Electrical Properties of KNN/LNO Thin Films Prepared by RF Magnetron Sputtering , 2013 .

[22]  Qing-Ming Wang,et al.  Electrical properties of K0.5Na0.5NbO3 thin films grown on Nb:SrTiO3 single-crystalline substrates with different crystallographic orientations , 2013 .

[23]  A. Kupec,et al.  Lead‐Free Ferroelectric Potassium Sodium Niobate Thin Films from Solution: Composition and Structure , 2012 .

[24]  E. Soergel Piezoresponse force microscopy (PFM) , 2011 .

[25]  W. Sakamoto,et al.  Processing of highly oriented (K,Na)NbO3 thin films using a tailored metal-alkoxide precursor solution , 2011 .

[26]  M. Kosec,et al.  Linear Thermal Expansion of Lead-Free Piezoelectric K0.5Na0.5NbO3 Ceramics in a Wide Temperature Range , 2011 .

[27]  W. Ren,et al.  Lead-free (K, Na)NbO3 ferroelectric thin films: Preparation, structure and electrical properties , 2010 .

[28]  I. Kim,et al.  Raman Spectra Study of K0.5Na0.5NbO3 Ferroelectric Thin Films , 2010 .

[29]  P. C. Goh,et al.  Lead-free piezoelectric (K0.5Na0.5)NbO3 thin films derived from chemical solution modified with stabilizing agents , 2010 .

[30]  M. Kosec,et al.  Polar Modes in K0.5Na0.5NbO3 Ceramics , 2009 .

[31]  B. Park,et al.  The effect of K and Na excess on the ferroelectric and piezoelectric properties of K0.5Na0.5NbO3 thin films , 2009 .

[32]  B. Park,et al.  Ferroelectric and piezoelectric properties of Na0.52K0.48NbO3 thin films prepared by radio frequency magnetron sputtering , 2009 .

[33]  N. Setter,et al.  Raman spectroscopy of (K,Na)NbO3 and (K,Na)1−xLixNbO3 , 2008, 0810.5445.

[34]  M. Kosec,et al.  Raman Scattering Studies of Lead Free (1-x)K0.5Na0.5NbO3-xSrTiO3 Relaxors , 2008 .

[35]  M. Kosec,et al.  Origin of Compressive Residual Stress in Alkoxide Derived PbTiO3 Thin Film on Si Wafer , 2008 .

[36]  K. Yao,et al.  Piezoelectric K0.5Na0.5NbO3 thick films derived from polyvinylpyrrolidone-modified chemical solution deposition , 2008 .

[37]  T. Iijima,et al.  Effect of (Na,K)-Excess Precursor Solutions on Alkoxy-Derived (Na,K)NbO3 Powders and Thin Films , 2007 .

[38]  N. Setter,et al.  A study of the phase diagram of (K,Na,Li)NbO3 determined by dielectric and piezoelectric measurements, and Raman spectroscopy , 2007 .

[39]  W. Sakamoto,et al.  Lead-Free Piezoelectric (K,Na)NbO3 Thin Films Derived from Metal Alkoxide Precursors , 2007 .

[40]  Yasuyoshi Saito,et al.  Lead-free piezoceramics , 2004, Nature.

[41]  R. W. Schwartz,et al.  Chemical solution deposition of electronic oxide films , 2004 .

[42]  G. Haertling Ferroelectric ceramics : History and technology , 1999 .

[43]  G. Haertling Ferroelectric thin films for electronic applications , 1991 .

[44]  M. Ahtee,et al.  Structural phase transitions in sodium–potassium niobate solid solutions by neutron powder diffraction , 1978 .

[45]  R. E. Jaeger,et al.  Hot Pressing of Potassium‐Sodium Niobates , 1962 .

[46]  P. Vilarinho,et al.  Elastic moduli of potassium sodium niobate ceramics: Impact of spark plasma texturing , 2022, Scripta Materialia.

[47]  P. Vilarinho,et al.  Strain Effect on the Properties of Polar Dielectric Thin Films , 2019 .

[48]  C. C. Chen,et al.  Effects of Non-Stoichiometry on the Microstructure, Oxygen Vacancies, and Electrical Properties of KNN-Based Thin Films , 2016 .

[49]  K. Udayakumar Ferroelectric Thin Films for Electronic Applications , 1993 .