Multi-band MEG signatures of BOLD connectivity reorganization during visuospatial attention

[1]  Abigail S. Greene,et al.  Functional connectivity predicts changes in attention observed across minutes, days, and months , 2020, Proceedings of the National Academy of Sciences.

[2]  Maurizio Corbetta,et al.  The Impact of the Geometric Correction Scheme on MEG Functional Topology at Rest , 2019, Front. Neurosci..

[3]  Enrico Amico,et al.  Multi-timescale hybrid components of the functional brain connectome: A bimodal EEG-fMRI decomposition , 2019, bioRxiv.

[4]  M. Corbetta,et al.  Topology of Functional Connectivity and Hub Dynamics in the Beta Band As Temporal Prior for Natural Vision in the Human Brain , 2018, The Journal of Neuroscience.

[5]  Joaquín Goñi,et al.  The quest for identifiability in human functional connectomes , 2017, Scientific Reports.

[6]  Kevin Murphy,et al.  Towards a consensus regarding global signal regression for resting state functional connectivity MRI , 2017, NeuroImage.

[7]  J. Driver,et al.  Author's Accepted Manuscript Functional Connectivity between Prefrontal and Parietal Cortex Drives Visuo-spatial Attention Shifts Functional Connectivity between Prefrontal and Parietal Cortex Drives Visuo-spatial Attention Shifts , 2022 .

[8]  Thomas T. Liu,et al.  The global signal in fMRI: Nuisance or Information? , 2017, NeuroImage.

[9]  Carl D. Hacker,et al.  Frequency-specific electrophysiologic correlates of resting state fMRI networks , 2017, NeuroImage.

[10]  Zhongming Liu,et al.  Broadband Electrophysiological Dynamics Contribute to Global Resting-State fMRI Signal , 2016, The Journal of Neuroscience.

[11]  Timothy Edward John Behrens,et al.  Task-free MRI predicts individual differences in brain activity during task performance , 2016, Science.

[12]  Mathieu Bourguignon,et al.  A geometric correction scheme for spatial leakage effects in MEG/EEG seed‐based functional connectivity mapping , 2015, Human brain mapping.

[13]  Fernando Maestú,et al.  Multimodal description of whole brain connectivity: A comparison of resting state MEG, fMRI, and DWI , 2015, Human brain mapping.

[14]  R. Salmelin,et al.  Task- and stimulus-related cortical networks in language production: Exploring similarity of MEG- and fMRI-derived functional connectivity , 2015, NeuroImage.

[15]  Viviana Betti,et al.  Dynamic reorganization of human resting-state networks during visuospatial attention , 2015, Proceedings of the National Academy of Sciences.

[16]  Joerg F. Hipp,et al.  BOLD fMRI Correlation Reflects Frequency-Specific Neuronal Correlation , 2015, Current Biology.

[17]  Maurizio Corbetta,et al.  Dynamics of EEG Rhythms Support Distinct Visual Selection Mechanisms in Parietal Cortex: A Simultaneous Transcranial Magnetic Stimulation and EEG Study , 2015, The Journal of Neuroscience.

[18]  Gian Luca Romani,et al.  Being an agent or an observer: Different spectral dynamics revealed by MEG , 2014, NeuroImage.

[19]  Jonathan D. Power,et al.  Intrinsic and Task-Evoked Network Architectures of the Human Brain , 2014, Neuron.

[20]  M. Corbetta,et al.  Domain-general Signals in the Cingulo-opercular Network for Visuospatial Attention and Episodic Memory , 2014, Journal of Cognitive Neuroscience.

[21]  Mark W. Woolrich,et al.  Adding dynamics to the Human Connectome Project with MEG , 2013, NeuroImage.

[22]  Viviana Betti,et al.  Natural Scenes Viewing Alters the Dynamics of Functional Connectivity in the Human Brain , 2013, Neuron.

[23]  Thomas T. Liu,et al.  The amplitude of the resting-state fMRI global signal is related to EEG vigilance measures , 2013, NeuroImage.

[24]  David M. Groppe,et al.  Neurophysiological Investigation of Spontaneous Correlated and Anticorrelated Fluctuations of the BOLD Signal , 2013, The Journal of Neuroscience.

[25]  Maurizio Corbetta,et al.  Anatomical Segregation of Visual Selection Mechanisms in Human Parietal Cortex , 2013, The Journal of Neuroscience.

[26]  Omer Tal,et al.  Caffeine-Induced Global Reductions in Resting-State BOLD Connectivity Reflect Widespread Decreases in MEG Connectivity , 2013, Front. Hum. Neurosci..

[27]  Y. Saalmann,et al.  Electrophysiological Low-Frequency Coherence and Cross-Frequency Coupling Contribute to BOLD Connectivity , 2012, Neuron.

[28]  O. Jensen,et al.  Alpha Oscillations Serve to Protect Working Memory Maintenance against Anticipated Distracters , 2012, Current Biology.

[29]  Dante Mantini,et al.  A K-means multivariate approach for clustering independent components from magnetoencephalographic data , 2012, NeuroImage.

[30]  M. Corbetta,et al.  A Cortical Core for Dynamic Integration of Functional Networks in the Resting Human Brain , 2012, Neuron.

[31]  M. Corbetta,et al.  Large-scale cortical correlation structure of spontaneous oscillatory activity , 2012, Nature Neuroscience.

[32]  R. VanRullen,et al.  An oscillatory mechanism for prioritizing salient unattended stimuli , 2012, Trends in Cognitive Sciences.

[33]  N. Logothetis,et al.  The Amplitude and Timing of the BOLD Signal Reflects the Relationship between Local Field Potential Power at Different Frequencies , 2012, The Journal of Neuroscience.

[34]  Darren Price,et al.  Investigating the electrophysiological basis of resting state networks using magnetoencephalography , 2011, Proceedings of the National Academy of Sciences.

[35]  Matthew J. Brookes,et al.  Measuring functional connectivity using MEG: Methodology and comparison with fcMRI , 2011, NeuroImage.

[36]  Maurizio Corbetta,et al.  A Signal-Processing Pipeline for Magnetoencephalography Resting-State Networks , 2011, Brain Connect..

[37]  Jeff H. Duyn,et al.  Large-scale spontaneous fluctuations and correlations in brain electrical activity observed with magnetoencephalography , 2010, NeuroImage.

[38]  M. Corbetta,et al.  Temporal dynamics of spontaneous MEG activity in brain networks , 2010, Proceedings of the National Academy of Sciences.

[39]  M. Corbetta,et al.  Right Hemisphere Dominance during Spatial Selective Attention and Target Detection Occurs Outside the Dorsal Frontoparietal Network , 2010, The Journal of Neuroscience.

[40]  Stephen M Smith,et al.  Correspondence of the brain's functional architecture during activation and rest , 2009, Proceedings of the National Academy of Sciences.

[41]  M. Corbetta,et al.  Interaction of Stimulus-Driven Reorienting and Expectation in Ventral and Dorsal Frontoparietal and Basal Ganglia-Cortical Networks , 2009, The Journal of Neuroscience.

[42]  C. Schroeder,et al.  Low-frequency neuronal oscillations as instruments of sensory selection , 2009, Trends in Neurosciences.

[43]  A. Engel,et al.  Neuronal Synchronization along the Dorsal Visual Pathway Reflects the Focus of Spatial Attention , 2008, Neuron.

[44]  Biyu J. He,et al.  Electrophysiological correlates of the brain's intrinsic large-scale functional architecture , 2008, Proceedings of the National Academy of Sciences.

[45]  M. Corbetta,et al.  Top-Down Control of Human Visual Cortex by Frontal and Parietal Cortex in Anticipatory Visual Spatial Attention , 2008, The Journal of Neuroscience.

[46]  Niels Birbaumer,et al.  Cross-frequency phase synchronization: A brain mechanism of memory matching and attention , 2008, NeuroImage.

[47]  M. Corbetta,et al.  Electrophysiological signatures of resting state networks in the human brain , 2007, Proceedings of the National Academy of Sciences.

[48]  Denis G. Pelli,et al.  ECVP '07 Abstracts , 2007, Perception.

[49]  Á. Pascual-Leone,et al.  α-Band Electroencephalographic Activity over Occipital Cortex Indexes Visuospatial Attention Bias and Predicts Visual Target Detection , 2006, The Journal of Neuroscience.

[50]  Claudio Babiloni,et al.  Temporal dynamics of alpha and beta rhythms in human SI and SII after galvanic median nerve stimulation. A MEG study , 2004, NeuroImage.

[51]  Tena I. Katsaounis,et al.  Analyzing Multivariate Data , 2004, Technometrics.

[52]  N. Logothetis,et al.  Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. , 2003, Cerebral cortex.

[53]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[54]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[55]  Vittorio Pizzella,et al.  SQUID systems for biomagnetic imaging , 2001 .

[56]  S. N. Erné,et al.  Biomagnetic systems for clinical use , 2000 .

[57]  T Moore,et al.  Shape representations and visual guidance of saccadic eye movements. , 1999, Science.

[58]  Jonathan D. Cohen,et al.  Improved Assessment of Significant Activation in Functional Magnetic Resonance Imaging (fMRI): Use of a Cluster‐Size Threshold , 1995, Magnetic resonance in medicine.

[59]  R. Cattell The Scree Test For The Number Of Factors. , 1966, Multivariate behavioral research.

[60]  W. Haenszel,et al.  Statistical aspects of the analysis of data from retrospective studies of disease. , 1959, Journal of the National Cancer Institute.

[61]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[62]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.