Error control and mesh optimization for high-order finite element approximation of incompressible viscous flow

Abstract We discuss the use of a posteriori error estimates for high-order finite element methods during simulation of the flow of incompressible viscous fluids. The correlation between the error estimator and actual error is used as a criterion for the error analysis efficiency. We show how to use the error estimator for mesh optimization which improves computational efficiency for both steady-state and unsteady flows. The method is applied to two-dimensional problems with known analytical solutions (Jeffrey-Hamel flow) and more complex flows around a body, both in a channel and in an open domain.

[1]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[2]  M. Braza,et al.  Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder , 1986, Journal of Fluid Mechanics.

[3]  Eric Saltel,et al.  Emc un logiciel d'edition de maillages et de contours bidimensionnels , 1990 .

[4]  I. Babuska,et al.  A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .

[5]  Claes Johnson,et al.  Adaptive finite element methods for diffusion and convection problems , 1990 .

[6]  R. Scott,et al.  Fast Algorithms for Solving High-Order Finite Element Equations for Incompressible Flow , 1995 .

[7]  M. Fortin,et al.  Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .

[8]  Rolf Rannacher,et al.  On Error Control in CFD , 1994 .

[9]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[10]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[11]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[12]  S. McFee,et al.  Automatic Mesh Generation for h-p Adaption , 1992, Digest of the Fifth Biennial IEEE Conference on Electromagnetic Field Computation.

[13]  L. Ridgway Scott,et al.  Implementing and using high-order finite element methods , 1994 .

[14]  L. R. Scott,et al.  Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials , 1985 .

[15]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .