Brain Fiber Clustering Using Non-negative Kernelized Matching Pursuit

We present a kernel dictionary learning method to cluster fiber tracts obtained from diffusion Magnetic Resonance Imaging dMRI data. This method extends the kernelized Orthogonal Matching Pursuit kOMP model by adding non-negativity constraints to the dictionary and sparse weights, and uses an efficient technique based on non-negative tri-factorization to compute these parameters. Unlike existing fiber clustering approaches, the proposed method allows fibers to be assigned to more than one cluster and does not need to compute an explicit embedding of the fibers. We evaluate the performance of our method on labeled and multi-subject data, using several fiber distance measures, and compare it with state of the art fiber clustering approaches. Our experiments show that the method is more accurate than the ones we compare against, while being robust to the choice of distance measure and number of clusters.

[1]  Guy B. Williams,et al.  QuickBundles, a Method for Tractography Simplification , 2012, Front. Neurosci..

[2]  A. Alexander,et al.  White matter tractography using diffusion tensor deflection , 2003, Human brain mapping.

[3]  Guido Gerig,et al.  Towards a shape model of white matter fiber bundles using diffusion tensor MRI , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[4]  Carl-Fredrik Westin,et al.  Automatic Tractography Segmentation Using a High-Dimensional White Matter Atlas , 2007, IEEE Transactions on Medical Imaging.

[5]  Guillermo Sapiro,et al.  Dictionary learning and sparse coding for unsupervised clustering , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[6]  Maya R. Gupta,et al.  Learning kernels from indefinite similarities , 2009, ICML '09.

[7]  Rama Chellappa,et al.  Kernel dictionary learning , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[8]  K. Whittingstall,et al.  Tractography in the Study of the Human Brain: A Neurosurgical Perspective , 2012, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[9]  W. Eric L. Grimson,et al.  Tractography segmentation using a hierarchical Dirichlet processes mixture model , 2011, NeuroImage.

[10]  Inderjit S. Dhillon,et al.  Kernel k-means: spectral clustering and normalized cuts , 2004, KDD.

[11]  J. K. Smith,et al.  Vessel tortuosity and brain tumor malignancy: a blinded study. , 2005, Academic radiology.

[12]  Carl-Fredrik Westin,et al.  Clustering Fiber Traces Using Normalized Cuts , 2004, MICCAI.

[13]  Rachid Deriche,et al.  Unsupervised white matter fiber clustering and tract probability map generation: Applications of a Gaussian process framework for white matter fibers , 2010, NeuroImage.

[14]  Chris H. Q. Ding,et al.  Orthogonal nonnegative matrix t-factorizations for clustering , 2006, KDD '06.

[15]  Anna Vilanova,et al.  Evaluation of fiber clustering methods for diffusion tensor imaging , 2005, VIS 05. IEEE Visualization, 2005..