Quantitative Modeling of the Equilibration of Two-Phase Solid-Liquid Fe by Atomistic Simulations on Diffusive Time Scales

(Received 10 July 2014; revised manuscript received 10 December 2014; published 12 January 2015) In this paper, molecular dynamics (MD) simulations based on the modified-embedded atom method (MEAM) and a phase-field crystal (PFC) model are utilized to quantitatively investigate the solid-liquid properties of Fe. A set of second nearest-neighbor MEAM parameters for high-temperature applications are developed for Fe, and the solid-liquid coexisting approach is utilized in MD simulations to accurately calculate the melting point, expansion in melting, latent heat, and solid-liquid interface free energy, and surface anisotropy. The required input properties to determine the PFC model parameters, such as liquid structure factor and fluctuations of atoms in the solid, are also calculated from MD simulations. The PFC parameters are calculated utilizing an iterative procedure from the inputs of MD simulations. The solid-liquid interface free energy and surface anisotropy are calculated using the PFC simulations. Very good agreement is observed between the results of our calculations from MEAM-MD and PFC simulations and the available modeling and experimental results in the literature. As an application of the developed model, the grain boundary free energy of Fe is calculated using the PFC model and the results are compared against experiments.

[1]  K. Elder,et al.  Calculations of isothermal elastic constants in the phase-field crystal model , 2013 .

[2]  J. Swift,et al.  Hydrodynamic fluctuations at the convective instability , 1977 .

[3]  W. Craig Carter,et al.  Diffuse interface model for structural transitions of grain boundaries , 2006 .

[4]  Eun-Ha Kim,et al.  The modified embedded-atom method interatomic potentials and recent progress in atomistic simulations , 2010 .

[5]  A. T. Price,et al.  The surface energy and self diffusion coefficient of solid iron above 1350°C , 1964 .

[6]  G. Wagner,et al.  Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys , 2012 .

[7]  B. Warren,et al.  X-Ray Diffraction , 2014 .

[8]  Department of Physics,et al.  EFFICIENT COMPUTATION OF DENDRITIC MICROSTRUCTURES USING ADAPTIVE MESH REFINEMENT , 1998 .

[9]  Joel Berry,et al.  Melting at dislocations and grain boundaries: A phase field crystal study , 2008, 0801.0765.

[10]  Ruslan L. Davidchack,et al.  Molecular dynamics calculation of solid–liquid interfacial free energy and its anisotropy during iron solidification , 2013 .

[11]  M. Baskes,et al.  Modified embedded-atom potentials for cubic materials and impurities. , 1992, Physical review. B, Condensed matter.

[12]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[13]  M. Grant,et al.  Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  M. Baskes,et al.  Two-Phase Solid-Liquid Coexistence of Ni, Cu, and Al by Molecular Dynamics Simulations using the Modified Embedded-Atom Method , 2015 .

[15]  W. Read,et al.  Dislocation Models of Crystal Grain Boundaries , 1950 .

[16]  Hartmut Löwen,et al.  Derivation of the phase-field-crystal model for colloidal solidification. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  S. Sutton,et al.  The structure of amorphous iron at high pressures to 67 GPa measured in a diamond anvil cell , 2004 .

[18]  A. Karma,et al.  Phase-field crystal modeling of equilibrium bcc-liquid interfaces , 2007, 0706.3675.

[19]  N. Provatas,et al.  Multicomponent phase-field crystal model for structural transformations in metal alloys , 2012, 1211.0003.

[20]  Graeme Ackland,et al.  Development of an interatomic potential for phosphorus impurities in α-iron , 2004 .

[21]  J. Warren,et al.  Thermodynamics of grain boundary premelting in alloys. I. Phase-field modeling , 2009 .

[22]  Graeme Ackland,et al.  Computer simulation of point defect properties in dilute Fe—Cu alloy using a many-body interatomic potential , 1997 .

[23]  M F Horstemeyer,et al.  An interatomic potential for saturated hydrocarbons based on the modified embedded-atom method. , 2013, Physical chemistry chemical physics : PCCP.

[24]  Michael I. Baskes,et al.  Second nearest-neighbor modified embedded atom method potentials for bcc transition metals , 2001 .

[25]  N. Provatas,et al.  Atomistic Modeling of Solidification Phenomena Using the Phase-Field-Crystal Model , 2013 .

[26]  A. Karma,et al.  Method for computing the anisotropy of the solid-liquid interfacial free energy. , 2001, Physical review letters.

[27]  K. Elder,et al.  The Kirkendall effect in the phase field crystal model , 2011 .

[28]  B. Laird,et al.  The anisotropic hard-sphere crystal-melt interfacial free energy from fluctuations. , 2006, The Journal of chemical physics.

[29]  S. Vosko,et al.  A product representation for cubic harmonics and special directions for the determination of the Fermi surface and related properties , 1976 .

[30]  M. Grant,et al.  Phase-field crystal modeling and classical density functional theory of freezing , 2007 .

[31]  M. Baskes,et al.  Phase-Field Crystal Model for Fe Connected to MEAM Molecular Dynamics Simulations , 2014 .

[32]  Y. Shibuta,et al.  A Molecular Dynamics Study of Thermodynamic and Kinetic Properties of Solid-Liquid Interface for Bcc Iron , 2010 .

[33]  Nelson,et al.  Semiempirical modified embedded-atom potentials for silicon and germanium. , 1989, Physical review. B, Condensed matter.

[34]  M. Grant,et al.  Diffusive atomistic dynamics of edge dislocations in two dimensions. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  N. Provatas,et al.  Free energy functionals for efficient phase field crystal modeling of structural phase transformations. , 2010, Physical review letters.

[36]  A. Dinsdale SGTE data for pure elements , 1991 .

[37]  C. Sinclair,et al.  Defect stability in phase-field crystal models: Stacking faults and partial dislocations , 2012, 1210.1527.

[38]  Joshua R. Smith,et al.  Universal features of the equation of state of metals , 1984 .

[39]  Michael I. Baskes,et al.  Second nearest-neighbor modified embedded-atom-method potential , 2000 .

[40]  M. Tschopp,et al.  Effect of vacancy defects on generalized stacking fault energy of fcc metals , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[41]  Martin Grant,et al.  Modeling elasticity in crystal growth. , 2001, Physical review letters.

[42]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[43]  Anders E. Carlsson,et al.  Beyond Pair Potentials in Elemental Transition Metals and Semiconductors , 1990 .

[44]  H. Ledbetter,et al.  Elastic Properties of Metals and Alloys, I. Iron, Nickel, and Iron-Nickel Alloys , 1973 .

[45]  Michel Rappaz,et al.  Orientation selection in dendritic evolution , 2006, Nature materials.

[46]  T. Ala‐Nissila,et al.  Thermodynamics of bcc metals in phase-field-crystal models. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  E. Lorch Neutron diffraction by germania, silica and radiation-damaged silica glasses , 1969 .

[48]  Seungwu Han,et al.  Development of new interatomic potentials appropriate for crystalline and liquid iron , 2003 .

[49]  G. Ackland,et al.  Semi-empirical calculation of solid surface tensions in body-centred cubic transition metals , 1986 .

[50]  Karma Fluctuations in solidification. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[51]  A. Karma,et al.  Quantitative phase-field modeling of dendritic growth in two and three dimensions , 1996 .

[52]  E. Asadi,et al.  A Review of Quantitative Phase-Field Crystal Modeling of Solid–Liquid Structures , 2015 .

[53]  Alain Karma,et al.  Phase-field crystal study of grain-boundary premelting , 2008, 0807.5083.

[54]  H. Löwen,et al.  Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview , 2012, 1207.0257.

[55]  J. Doll,et al.  Atomistic modeling of thermodynamic equilibrium and polymorphism of iron , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[56]  Mark Asta,et al.  Crystal-melt interfacial free energies and mobilities in fcc and bcc Fe , 2004 .

[57]  I. Kaban,et al.  Structure of liquid Fe–Al alloys , 2002 .

[58]  P. Deymier,et al.  Properties of liquid nickel: A critical comparison of EAM and MEAM calculations , 2001 .

[59]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[60]  M. Finnis,et al.  A simple empirical N-body potential for transition metals , 1984 .