Drug design is a process which begins with a compound that displays an interesting biological profile and ends with optimizing both the activity profile for the molecule. The process is initiated when the chemist conceives a hypothesis which relates the chemical features of the molecule (or series of molecules) to the biological activity. Study of Quantitative structural activity relationships (QSAR) is an important aspect of computational chemistry for optimizing the structural features to obtain better activity. Present research work focuses on in-silico drug design studies of novel indole derivatives containing pteridine and benzimidazole moieties. These studies include QSAR (Quantitative structure activity relationship) and QSTR (Quantitative Structure Toxicity Relationship) and are carried out using different software’s namely DS Viewer Pro suite, Accord for Excel (v6.1) and TOPKAT (v6.2). All the software’s were obtained from Accelrys Discovery studio. In-silico pharmacokinetic studies implied that these derivatives had no CYP4502D6 inhibitions, no BBB penetration and good oral absorptions. QSTR (Quantitative Structure Toxicity Relationship) studies by using TOPKAT (v6.1) in various computational animal models showed high LD50 values and the compounds are found to be noncarcenogenic.
[1]
Sarveshwar Shukla,et al.
Synthesis and Antimicrobial Potential of Mannich Bases of 4-Chloro-3-{4-(chlorobenzyloxy)-benzoylhydrazono}-indolin-2-ones.
,
2010
.
[2]
Mohit L. Deb,et al.
Synthesis of Novel Classes of Pyrido[2,3-d]pyrimidines, Pyrano[2,3-d]pyrimidines, and Pteridines
,
2007
.
[3]
S. Pandeya,et al.
Biological activities of isatin and its derivatives.
,
2005,
Acta pharmaceutica.
[4]
A. Gringauz.
Introduction to Medicinal Chemistry: How Drugs Act and Why
,
1996
.
[5]
V. Lather,et al.
Synthesis and antimicrobial activity of N1-(arylidine hydrazidomethyl)-indoles, 2-(substituted aryl)-3-(N1-indolyl acetamidyl)-4-oxo-thiazolidines and 5-benzylidine derivatives of thiazolidinones
,
2003
.
[6]
P. Upcroft,et al.
Synthesis, antiprotozoal and antibacterial activity of nitro- and halogeno-substituted benzimidazole derivatives.
,
2002,
Acta biochimica Polonica.