Combining estimates of the odds ratio: the state of the art

Medical research commonly relies on the combination of 2 x 2 tables of counted data for making inferences about treatment effects or about the causes of disease. This article reviews point estimation and interval estimation for a common odds ratio. Traditional methods for providing these estimates face special challenges, and sometimes break down, when the data are sparse. Recent research provides practical alternatives to the traditional methods, and uses new computer algorithms to make them readily available in microcomputer software packages. This article illustrates and compares the various methods and offers recommendations for using the newer methods when analysing data sets of moderate size.

[1]  T C Chalmers,et al.  A comparison of statistical methods for combining event rates from clinical trials. , 1989, Statistics in medicine.

[2]  Ayenew Ejigou Small-Sample Properties of Odds Ratio Estimators Under Multiple Matching in Case-Control Studies , 1990 .

[3]  Cyrus R. Mehta,et al.  A hybrid algorithm for fisher's exact test in unordered rxc contingency tables , 1986 .

[4]  Norman E. Breslow,et al.  Odds ratio estimators when the data are sparse , 1981 .

[5]  Iris Pigeot,et al.  A Jackknife Estimator of a Combined Odds Ratio , 1991 .

[6]  S Greenland,et al.  A general estimator for the variance of the Mantel-Haenszel odds ratio. , 1986, American journal of epidemiology.

[7]  A Donner,et al.  The large-sample relative efficiency of the Mantel-Haenszel estimator in the fixed-strata case. , 1986, Biometrics.

[8]  Robert M. Elashoff,et al.  Fast Computation of Exact Confidence Limits for the Common Odds Ratio in a Series of 2 × 2 Tables , 1991 .

[9]  J. Gart,et al.  On the bias of various estimators of the logit and its variance with application to quantal bioassay. , 1967, Biometrika.

[10]  C. Mehta,et al.  A network algorithm for the exact treatment of Fisher's exact test in RxC contingency tables , 1983 .

[11]  Cyrus R. Mehta,et al.  Comparison of Exact, Mid-p, and Mantel–Haenszel Confidence Intervals for the Common Odds Ratio Across Several 2 × 2 Contingency Tables , 1992 .

[12]  Walter W. Hauck,et al.  On the asymptotic inefficiency of certain noniterative estimators of a common relative risk or odds ratio , 1983 .

[13]  A Antczak-Bouckoms,et al.  Ambulatory Cardiac Monitoring for the Evaluation of Antiarrhythmic Agents , 1993, International Journal of Technology Assessment in Health Care.

[14]  Walter W. Hauck,et al.  On the Large-Sample Distribution of the Mantel-Haenszel Odds-Ratio Estimator , 1983 .

[15]  George M. Logan,et al.  Data Analysis for Clinical Medicine: The Quantitative Approach to Patient Care in Gastroenterology, Thomas H. Chalmers (Ed.). International University Press, Rome (1988), 217, plus diskette, $49.00 , 1990 .

[16]  Iris Pigeot A class of asymptotically efficient noniterative estimators of a common odds ratio , 1990 .

[17]  Sonja M. McKINLAY,et al.  The effect of nonzero second-order interaction on combined estimators of the odds ratio , 1978 .

[18]  W. Haenszel,et al.  Statistical aspects of the analysis of data from retrospective studies of disease. , 1959, Journal of the National Cancer Institute.

[19]  W W Hauck,et al.  A comparative study of conditional maximum likelihood estimation of a common odds ratio. , 1984, Biometrics.

[20]  Allan Donner,et al.  The asymptotic relative efficiency of the Mantel-Haenszel estimator in the increasing-number-of-strata case , 1988 .

[21]  Donald G. Thomas Exact and asymptotic methods for the combination of 2 × 2 tables , 1975 .

[22]  John J. Gart,et al.  On the Combination of Relative Risks , 1962 .

[23]  W. Dana Flanders A new variance estimator for the Mantel-Haenszel odds ratio , 1985 .

[24]  K. Y. Liang,et al.  The Variance of the Mantel-Haenszel Estimator , 1982 .

[25]  Allan Donner,et al.  A Simulation Study of the Analysis of Sets of 2 × 2 Contingency Tables under Cluster Sampling: Estimation of a Common Odds Ratio , 1990 .

[26]  John J. Gart,et al.  THE COMPARISON OF PROPORTIONS: A REVIEW OF SIGNIFICANCE TESTS, CONFIDENCE INTERVALS AND ADJUSTMENTS FOR STRATIFICATION' , 1971 .

[27]  Sander Greenland,et al.  On the Logical Justification of Conditional Tests for Two-By-Two Contingency Tables , 1991 .

[28]  Cyrus R. Mehta,et al.  Computing an Exact Confidence Interval for the Common Odds Ratio in Several 2×2 Contingency Tables , 1985 .

[29]  A. Agresti [A Survey of Exact Inference for Contingency Tables]: Rejoinder , 1992 .

[30]  W. Grove Statistical Methods for Rates and Proportions, 2nd ed , 1981 .

[31]  John J. Gart,et al.  Point and interval estimation of the common odds ratio in the combination of 2 × 2 tables with fixed marginals , 1970 .

[32]  R. Peto,et al.  Beta blockade during and after myocardial infarction: an overview of the randomized trials. , 1985, Progress in cardiovascular diseases.

[33]  D G Thomas,et al.  Exact and asymptotic methods for the combination of 2 times 2 tables. , 1975, Computers and biomedical research, an international journal.

[34]  F Mosteller,et al.  Some Statistical Methods for Combining Experimental Results , 1990, International Journal of Technology Assessment in Health Care.

[35]  J. Fleiss,et al.  Confidence intervals for the odds ratio in case-control studies: the state of the art. , 1979, Journal of chronic diseases.

[36]  Jerome Cornfield,et al.  A Statistical Problem Arising from Retrospective Studies , 1956 .

[37]  S Greenland,et al.  Bias in the one-step method for pooling study results. , 1990, Statistics in medicine.

[38]  Cyrus R. Mehta,et al.  A network algorithm for the exact treatment of the 2×k contingency table , 1980 .

[39]  A A Tsiatis,et al.  Exact significance testing to establish treatment equivalence with ordered categorical data. , 1984, Biometrics.

[40]  B. Woolf ON ESTIMATING THE RELATION BETWEEN BLOOD GROUP AND DISEASE , 1955, Annals of human genetics.

[41]  N Breslow,et al.  Estimators of the Mantel-Haenszel variance consistent in both sparse data and large-strata limiting models. , 1986, Biometrics.

[42]  R. Fisher,et al.  The Logic of Inductive Inference , 1935 .

[43]  Marvin Zelen,et al.  The analysis of several 2× 2 contingency tables , 1971 .

[44]  G. Barnard,et al.  On alleged gains in power from lower P-values. , 1989, Statistics in medicine.

[45]  Walter W. Hauck,et al.  The Large Sample Variance of the Mantel-Haenszel Estimator of a Common Odds Ratio , 1979 .

[46]  Paul W. Holland,et al.  Estimators of the Variance of the Mantel-Haenszel Log-Odds-Ratio Estimate , 1987 .

[47]  Linda June Davis,et al.  Generalization of the Mantel―Haenszel estimator to nonconstant odds ratios , 1985 .

[48]  Jean D. Gibbons,et al.  Concepts of Nonparametric Theory , 1981 .

[49]  H. O. Lancaster,et al.  Significance Tests in Discrete Distributions , 1961 .

[50]  Tosiya Sato,et al.  Confidence limits for the common odds ratio based on the asymptotic distribution of the Mantel-Haenszel estimator , 1990 .

[51]  J J Gart,et al.  Bioassay of pesticides and industrial chemicals for tumorigenicity in mice: a preliminary note. , 1969, Journal of the National Cancer Institute.

[52]  David R. Cox The analysis of binary data , 1970 .

[53]  Kung-Yee Liang,et al.  Odds ratio inference with dependent data , 1985 .