Fast and Robust Iterative Closest Point

The iterative closest point (ICP) algorithm and its variants are a fundamental technique for rigid registration between two point sets, with wide applications in different areas from robotics to 3D reconstruction. The main drawbacks for ICP are its slow convergence, as well as its sensitivity to outliers, missing data, and partial overlaps. Recent work such as Sparse ICP achieves robustness via sparsity optimization at the cost of computational speed. In this paper, we propose a new method for robust registration with fast convergence. First, we show that the classical point-to-point ICP can be treated as a majorization-minimization (MM) algorithm, and propose an Anderson acceleration approach to speed up its convergence. In addition, we introduce a robust error metric based on the Welsch’s function, which is minimized efficiently using the MM algorithm with Anderson acceleration. On challenging datasets with noises and partial overlaps, we achieve similar or better accuracy than Sparse ICP while being at least an order of magnitude faster. Finally, we extend the robust formulation to point-to-plane ICP, and solve the resulting problem using a similar Anderson-accelerated MM strategy. Our robust ICP methods improve the registration accuracy on benchmark datasets while being competitive in computational time.

[1]  Heng Yang,et al.  TEASER: Fast and Certifiable Point Cloud Registration , 2020, IEEE Transactions on Robotics.

[2]  Bailin Deng,et al.  Anderson Acceleration for Nonconvex ADMM Based on Douglas‐Rachford Splitting , 2020, Comput. Graph. Forum.

[3]  Vladlen Koltun,et al.  Deep Global Registration , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Stephen P. Boyd,et al.  Anderson Accelerated Douglas-Rachford Splitting , 2019, SIAM J. Sci. Comput..

[5]  Leo G. Rebholz,et al.  A Proof That Anderson Acceleration Improves the Convergence Rate in Linearly Converging Fixed-Point Methods (But Not in Those Converging Quadratically) , 2018, SIAM J. Numer. Anal..

[6]  Bailin Deng,et al.  Accelerating ADMM for efficient simulation and optimization , 2019, ACM Trans. Graph..

[7]  Szymon Rusinkiewicz,et al.  A symmetric objective function for ICP , 2019, ACM Trans. Graph..

[8]  Yue Wang,et al.  Deep Closest Point: Learning Representations for Point Cloud Registration , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[9]  Bailin Deng,et al.  Static/Dynamic Filtering for Mesh Geometry , 2017, IEEE Transactions on Visualization and Computer Graphics.

[10]  Phanish Suryanarayana,et al.  Alternating Anderson-Richardson method: An efficient alternative to preconditioned Krylov methods for large, sparse linear systems , 2016, Comput. Phys. Commun..

[11]  Wotao Yin,et al.  Global Convergence of ADMM in Nonconvex Nonsmooth Optimization , 2015, Journal of Scientific Computing.

[12]  Jayakorn Vongkulbhisal,et al.  Inverse Composition Discriminative Optimization for Point Cloud Registration , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[13]  Bailin Deng,et al.  Anderson acceleration for geometry optimization and physics simulation , 2018, ACM Trans. Graph..

[14]  Jean Ponce,et al.  Robust Guided Image Filtering Using Nonconvex Potentials , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Dzmitry Tsetserukou,et al.  AA-ICP: Iterative Closest Point with Anderson Acceleration , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[16]  Matthias Nießner,et al.  3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Homer F. Walker,et al.  Accelerating the Uzawa Algorithm , 2015, SIAM J. Sci. Comput..

[18]  Andrea Tagliasacchi,et al.  Modern techniques and applications for real-time non-rigid registration , 2016, SIGGRAPH ASIA Courses.

[19]  Vladlen Koltun,et al.  Fast Global Registration , 2016, ECCV.

[20]  Jiaolong Yang,et al.  Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Phanish Suryanarayana,et al.  Anderson acceleration of the Jacobi iterative method: An efficient alternative to Krylov methods for large, sparse linear systems , 2016, J. Comput. Phys..

[22]  C. T. Kelley,et al.  Convergence Analysis for Anderson Acceleration , 2015, SIAM J. Numer. Anal..

[23]  Thomas Brox,et al.  On Iteratively Reweighted Algorithms for Nonsmooth Nonconvex Optimization in Computer Vision , 2015, SIAM J. Imaging Sci..

[24]  Alexander Herzog,et al.  Robot arm pose estimation through pixel-wise part classification , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[25]  Niloy J. Mitra,et al.  Super4PCS: Fast Global Pointcloud Registration via Smart Indexing , 2019 .

[26]  Anthony J. Yezzi,et al.  A Compact Formula for the Derivative of a 3-D Rotation in Exponential Coordinates , 2013, Journal of Mathematical Imaging and Vision.

[27]  Andrea Tagliasacchi,et al.  Sparse Iterative Closest Point , 2013, Comput. Graph. Forum.

[28]  Gary K. L. Tam,et al.  Registration of 3D Point Clouds and Meshes: A Survey from Rigid to Nonrigid , 2013, IEEE Transactions on Visualization and Computer Graphics.

[29]  K. LIPNIKOV,et al.  Anderson Acceleration for Nonlinear Finite Volume Scheme for Advection-Diffusion Problems , 2013, SIAM J. Sci. Comput..

[30]  Wolfram Burgard,et al.  A benchmark for the evaluation of RGB-D SLAM systems , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  Roland Siegwart,et al.  Challenging data sets for point cloud registration algorithms , 2012, Int. J. Robotics Res..

[32]  Hans De Sterck,et al.  A Nonlinear GMRES Optimization Algorithm for Canonical Tensor Decomposition , 2011, SIAM J. Sci. Comput..

[33]  Baba C. Vemuri,et al.  Robust Point Set Registration Using Gaussian Mixture Models , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Homer F. Walker,et al.  Anderson Acceleration for Fixed-Point Iterations , 2011, SIAM J. Numer. Anal..

[35]  Florian Potra,et al.  A characterization of the behavior of the Anderson acceleration on linear problems , 2011, 1102.0796.

[36]  Andriy Myronenko,et al.  Point Set Registration: Coherent Point Drift , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Nico Blodow,et al.  Fast Point Feature Histograms (FPFH) for 3D registration , 2009, 2009 IEEE International Conference on Robotics and Automation.

[38]  Carl Olsson,et al.  Branch-and-Bound Methods for Euclidean Registration Problems , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Yousef Saad,et al.  Two classes of multisecant methods for nonlinear acceleration , 2009, Numer. Linear Algebra Appl..

[40]  Daniel Cohen-Or,et al.  4-points congruent sets for robust pairwise surface registration , 2008, ACM Trans. Graph..

[41]  Wotao Yin,et al.  Iteratively reweighted algorithms for compressive sensing , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[42]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[43]  Hongdong Li,et al.  The 3D-3D Registration Problem Revisited , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[44]  Shi-Min Hu,et al.  Geometry and Convergence Analysis of Algorithms for Registration of 3D Shapes , 2006, International Journal of Computer Vision.

[45]  James Diebel,et al.  Representing Attitude : Euler Angles , Unit Quaternions , and Rotation Vectors , 2006 .

[46]  Leonidas J. Guibas,et al.  Robust global registration , 2005, SGP '05.

[47]  Pavel Krsek,et al.  Robust Euclidean alignment of 3D point sets: the trimmed iterative closest point algorithm , 2005, Image Vis. Comput..

[48]  Zhengyou Zhang,et al.  Iterative point matching for registration of free-form curves and surfaces , 1994, International Journal of Computer Vision.

[49]  Helmut Pottmann,et al.  Registration of point cloud data from a geometric optimization perspective , 2004, SGP '04.

[50]  Helmut Pottmann,et al.  Registration without ICP , 2004, Comput. Vis. Image Underst..

[51]  Niloy J. Mitra,et al.  Estimating surface normals in noisy point cloud data , 2003, SCG '03.

[52]  J. Gallier,et al.  COMPUTING EXPONENTIALS OF SKEW-SYMMETRIC MATRICES AND LOGARITHMS OF ORTHOGONAL MATRICES , 2002 .

[53]  Andrew W. Fitzgibbon,et al.  Robust Registration of 2D and 3D Point Sets , 2003, BMVC.

[54]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[55]  Emanuele Trucco,et al.  Robust motion and correspondence of noisy 3-D point sets with missing data , 1999, Pattern Recognit. Lett..

[56]  V. Eyert A Comparative Study on Methods for Convergence Acceleration of Iterative Vector Sequences , 1996 .

[57]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[58]  N. Yokoya,et al.  A robust method for registration and segmentation of multiple range images , 1994, Proceedings of 1994 IEEE 2nd CAD-Based Vision Workshop.

[59]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[60]  Gérard G. Medioni,et al.  Object modeling by registration of multiple range images , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[61]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .

[62]  V. Varadarajan Lie groups, Lie algebras, and their representations , 1974 .

[63]  D. Hoffman,et al.  Generalization of Euler Angles to N-Dimensional Orthogonal Matrices , 1972 .

[64]  Donald G. M. Anderson Iterative Procedures for Nonlinear Integral Equations , 1965, JACM.