Symmetric simple exclusion process in dynamic environment: hydrodynamics

We consider the symmetric simple exclusion process in $\mathbb Z^d$ with quenched bounded dynamic random conductances and prove its hydrodynamic limit in path space. The main tool is the connection, due to the self-duality of the process, between the invariance principle for single particles starting from all points and the macroscopic behavior of the density field. While the hydrodynamic limit at fixed macroscopic times is obtained via a generalization to the time-inhomogeneous context of the strategy introduced in \cite{nagy_symmetric_2002}, in order to prove tightness for the sequence of empirical density fields we develop a new criterion based on the notion of uniform conditional stochastic continuity, following \cite{varadhan_stochasticprocesses_2007}. In conclusion, we show that uniform elliptic dynamic conductances provide an example of environments in which the so-called arbitrary starting point invariance principle may be derived from the invariance principle of a single particle starting from the origin. Therefore, our hydrodynamics result applies to the examples of quenched environments considered in, e.g.,\ \cite{andres2014}, \cite{andres_quenched_2018}, \cite{biskup_invariance_2019} in combination with the hypothesis of uniform ellipticity.

[1]  Stefan Grosskinsky Warwick,et al.  Interacting Particle Systems , 2016 .

[2]  Invariance Principle for the one-dimensional dynamic Random Conductance Model under Moment Conditions , 2016, 1604.03826.

[3]  J. Fritz Hydrodynamics in a symmetric random medium , 1989 .

[4]  G. Mil’shtein,et al.  Interaction of Markov Processes , 1972 .

[5]  A. Faggionato Random walks and exclusion processes among random conductances on random infinite clusters: homogenization and hydrodynamic limit , 2007, 0704.3020.

[6]  S. Andrés,et al.  Invariance principle for the random conductance model with dynamic bounded conductances , 2012, 1202.0803.

[7]  S. Olla,et al.  Equilibrium Fluctuations for $\nabla_{\varphi}$ Interface Model , 2001 .

[8]  An invariance principle for one-dimensional random walks among dynamical random conductances , 2018, Electronic Journal of Probability.

[9]  F. Redig,et al.  Random walks in dynamic random environments: A transference principle , 2012, 1211.0830.

[10]  Thomas G. Kurtz,et al.  Extensions of Trotter's operator semigroup approximation theorems , 1969 .

[11]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[12]  George Papanicolaou,et al.  Nonlinear diffusion limit for a system with nearest neighbor interactions , 1988 .

[13]  V. Rohatgi A Course in the Theory of Stochastic Processes , 1983 .

[14]  Scaling Limits for Gradient Systems in Random Environment , 2007, math/0702513.

[15]  P. Lee,et al.  A Course in the Theory of Stochastic Processes , 1983, The Mathematical Gazette.

[16]  Hydrodynamic limit of a disordered lattice gas , 2003 .

[17]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[18]  Quenched non-equilibrium central limit theorem for a tagged particle in the exclusion process with bond disorder , 2006, math/0603653.

[19]  C. Landim,et al.  Hydrodynamic behavior of 1D subdiffusive exclusion processes with random conductances , 2009 .

[20]  Zhen-Qing Chen,et al.  Quenched Invariance Principles for Random Walks and Elliptic Diffusions in Random Media with Boundary , 2013, 1306.0076.

[21]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[22]  T. E. Harris,et al.  Nearest-neighbor Markov interaction processes on multidimensional lattices , 1972 .

[23]  M. Metivier,et al.  Weak convergence of sequences of semimartingales with applications to multitype branching processes , 1986, Advances in Applied Probability.

[24]  O. Blondel,et al.  Analysis of random walks in dynamic random environments viaL2-perturbations , 2016, Stochastic Processes and their Applications.

[25]  G. Shedler,et al.  Simulation of Nonhomogeneous Poisson Processes by Thinning , 1979 .

[26]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[27]  M. Biskup,et al.  Limit theory for random walks in degenerate time-dependent random environments , 2017, 1703.02941.

[28]  D. Stroock Markov chain approximations to symmetric diffusions , 1997 .

[29]  René Carmona,et al.  Stochastic Partial Differential Equations: Six Perspectives , 1998 .

[30]  J. Lebowitz,et al.  Microscopic basis for Fick's law for self-diffusion , 1982 .

[31]  A. Faggionato Bulk diffusion of 1d exclusion process with bond disorder. , 2006, math/0601076.

[32]  J. Lebowitz,et al.  Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems , 1999 .

[33]  A. Faggionato Hydrodynamic Limit of Zero Range Processes Among Random Conductances on the Supercritical Percolation Cluster , 2008, 0810.0103.

[34]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[35]  A. Faggionato Hydrodynamic limit of symmetric exclusion processes in inhomogeneous media , 2010, 1003.5521.

[36]  Bjorn Bottcher Feller Evolution Systems: Generators and Approximation , 2013, 1305.0375.

[37]  C. Giardinà,et al.  Duality for Stochastic Models of Transport , 2012, 1212.3154.

[38]  Jeremy Quastel,et al.  Diffusion of color in the simple exclusion process , 1992 .

[39]  F. Redig,et al.  Hydrodynamics for the partial exclusion process in random environment , 2019, 1911.12564.

[40]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[41]  F. Otto,et al.  Anchored Nash inequalities and heat kernel bounds for static and dynamic degenerate environments , 2015, 1503.08280.

[42]  Erkan Nane,et al.  Space-time fractional stochastic partial differential equations with Lévy noise , 2019, 1902.10637.

[43]  J. Deuschel,et al.  Invariance principle for the random conductance model , 2013 .

[44]  H. Poincaré,et al.  Percolation ? , 1982 .

[45]  J. Deuschel,et al.  Quenched invariance principle for random walks with time-dependent ergodic degenerate weights , 2016, 1602.01760.

[46]  J. Deuschel,et al.  On estimating the derivatives of symmetric diffusions in stationary random environment, with applications to ∇ϕ interface model , 2005 .

[47]  Katalin Nagy,et al.  Symmetric random walk in random environment in one dimension , 2002, Period. Math. Hung..

[48]  A. Masi,et al.  Mathematical Methods for Hydrodynamic Limits , 1991 .

[49]  S. Olla,et al.  EQUILIBRIUM FLUCTUATIONS FOR ∇ϕ INTERFACE MODEL , 2001 .

[50]  Jerzy Zabczyk,et al.  Stochastic Partial Differential Equations with Lévy Noise: An Evolution Equation Approach , 2007 .

[51]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[52]  C. Landim,et al.  Scaling Limits of Interacting Particle Systems , 1998 .