Model Order Reduction: a survey

This chapter presents an overview of Model Order Reduction – a new paradigm in the field of simulationbased engineering sciences, and one that can tackle the challenges and leverage the opportunities of modern ICT technologies. Despite the impressive progress attained by simulation capabilities and techniques, a number of challenging problems remain intractable. These problems are of different nature, but are common to many branches of science and engineering. Among them are those related to high-dimensional problems, problems involving very different time scales, models defined in degenerate domains with at least one of the characteristic dimensions much smaller than the others, model requiring real-time simulation, and parametric models. All these problems represent a challenge for standard mesh-based discretization techniques; yet the ability to solve these problems efficiently would open unexplored routes for real-time simulation, inverse analysis, uncertainty quantification and propagation, real-time optimization, and simulation-based control – critical needs in many branches of science and engineering. Model Order Reduction offers new simulation alternatives by circumventing, or at least alleviating, otherwise intractable computational challenges. In the present chapter we revisit three of these model reduction techniques: the Proper Orthogonal Decomposition, the Proper Generalized Decomposition, and Reduced Basis methodologies. key words: Model Order Reduction, Proper Orthogonal Decomposition, Proper Generalized Decomposition, Reduced Basis

[1]  Marie Billaud-Friess,et al.  A tensor approximation method based on ideal minimal residual formulations for the solution of high-dimensional problems ∗ , 2013, 1304.6126.

[2]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[3]  E. Cueto,et al.  Proper Generalized Decomposition based dynamic data driven inverse identification , 2012, Math. Comput. Simul..

[4]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[5]  Yutaka Inamasu,et al.  ON A MULTISTEP METHOD , 1994 .

[6]  Muruhan Rathinam,et al.  A New Look at Proper Orthogonal Decomposition , 2003, SIAM J. Numer. Anal..

[7]  Marco Gigliotti,et al.  A novel methodology for the rapid identification of the water diffusion coefficients of composite materials , 2015 .

[8]  C. Allery,et al.  Proper general decomposition (PGD) for the resolution of Navier-Stokes equations , 2011, J. Comput. Phys..

[9]  M. Brand,et al.  Fast low-rank modifications of the thin singular value decomposition , 2006 .

[10]  Michael Günther,et al.  Hierarchical Mixed Multirating in Circuit Simulation , 2007 .

[11]  P. Ladevèze,et al.  The LATIN multiscale computational method and the Proper Generalized Decomposition , 2010 .

[12]  Elías Cueto,et al.  Proper generalized decomposition of multiscale models , 2010 .

[13]  Gianluigi Rozza,et al.  Reduced basis method for multi-parameter-dependent steady Navier-Stokes equations: Applications to natural convection in a cavity , 2009, J. Comput. Phys..

[14]  Karen Willcox,et al.  A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems , 2015, SIAM Rev..

[15]  A. Ammar,et al.  PGD-Based Computational Vademecum for Efficient Design, Optimization and Control , 2013, Archives of Computational Methods in Engineering.

[16]  L. Gallimard,et al.  Shell finite element based on the Proper Generalized Decomposition for the modeling of cylindrical composite structures , 2014 .

[17]  J. M. A. Scherpen,et al.  Balancing for nonlinear systems , 1993 .

[18]  T. A. Porsching,et al.  The reduced basis method for initial value problems , 1987 .

[19]  G. Gómez,et al.  Absolute Stability Analysis of Semi-Implicit Multirate Linear Multistep Methods , 2002 .

[20]  Gianluigi Rozza,et al.  Reduced basis approximation and error bounds for potential flows in parametrized geometries , 2011 .

[21]  Pierre Ladevèze,et al.  A multiple solution method for non-linear structural mechanics , 1998 .

[22]  Francisco Chinesta,et al.  Routes for Efficient Computational Homogenization of Nonlinear Materials Using the Proper Generalized Decompositions , 2010 .

[23]  Max Gunzburger,et al.  Perspectives in flow control and optimization , 1987 .

[24]  P. B. L. Meijer,et al.  Neural Networks for Device and Circuit Modelling , 2001 .

[25]  Benjamin Peherstorfer,et al.  Localized Discrete Empirical Interpolation Method , 2014, SIAM J. Sci. Comput..

[26]  Y. Favennec,et al.  The adjoint method coupled with the modal identification method for nonlinear model reduction , 2006 .

[27]  David Dureisseix,et al.  A LATIN computational strategy for multiphysics problems: application to poroelasticity , 2003 .

[28]  T. A. Porsching,et al.  Estimation of the error in the reduced basis method solution of nonlinear equations , 1985 .

[29]  Francisco Chinesta,et al.  Recirculating Flows Involving Short Fiber Suspensions: Numerical Difficulties and Efficient Advanced Micro-Macro Solvers , 2009 .

[30]  R. Freund Model reduction methods based on Krylov subspaces , 2003, Acta Numerica.

[31]  F. Chinesta,et al.  Parametric 3D elastic solutions of beams involved in frame structures , 2015 .

[32]  L Sirovich,et al.  The Karhunen-lo Eve Procedure for Gappy Data , 1995 .

[33]  Pierre Ladevèze,et al.  A nonincremental approach for large displacement problems , 1997 .

[34]  Pedro Díez,et al.  Streamline upwind/Petrov–Galerkin‐based stabilization of proper generalized decompositions for high‐dimensional advection–diffusion equations , 2013 .

[35]  Peter Benner,et al.  Dimension Reduction of Large-Scale Systems , 2005 .

[36]  T. Voss,et al.  Model order reduction for nonlinear differential algebraic equations in circuit simulation , 2008 .

[37]  D. Rovas,et al.  A Posteriori Error Bounds for Reduced-Basis Approximation of Parametrized Noncoercive and Nonlinear Elliptic Partial Differential Equations , 2003 .

[38]  N. Nguyen,et al.  EFFICIENT REDUCED-BASIS TREATMENT OF NONAFFINE AND NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS , 2007 .

[39]  ter Ejw Jan Maten,et al.  Compound BDF multirate transient analysis applied to circuit simulation , 2006 .

[40]  Karen Willcox,et al.  Proper orthogonal decomposition extensions for parametric applications in compressible aerodynamics , 2003 .

[41]  Arie Verhoeven,et al.  Stability analysis of the BDF Slowest-first multirate methods , 2007, Int. J. Comput. Math..

[42]  W. Rheinboldt Numerical analysis of continuation methods for nonlinear structural problems , 1981 .

[43]  W.H.A. Schilders,et al.  Automatic problemsize reduction for on-state semiconductor problems , 1983, IEEE Transactions on Electron Devices.

[44]  Gianluigi Rozza,et al.  Reduced basis methods for Stokes equations in domains with non-affine parameter dependence , 2009 .

[45]  Adrien Leygue,et al.  An overview of the proper generalized decomposition with applications in computational rheology , 2011 .

[46]  Charbel Farhat,et al.  Reduced-order fluid/structure modeling of a complete aircraft configuration , 2006 .

[47]  Tatjana Stykel,et al.  Gramian-Based Model Reduction for Descriptor Systems , 2004, Math. Control. Signals Syst..

[48]  L. Champaney,et al.  Large scale applications on parallel computers of a mixed domain decomposition method , 1997 .

[49]  David Dureisseix,et al.  Toward an optimal a priori reduced basis strategy for frictional contact problems with LATIN solver , 2015 .

[50]  Joerg Blasius,et al.  Geometric Data Analysis , 2000 .

[51]  Gianluigi Rozza,et al.  Certified reduced basis approximation for parametrized partial differential equations and applications , 2011 .

[52]  Robert F. Cahalan,et al.  Sampling Errors in the Estimation of Empirical Orthogonal Functions , 1982 .

[53]  Jacob K. White,et al.  Relaxation Techniques for the Simulation of VLSI Circuits , 1986 .

[54]  A. Huerta,et al.  Parametric solutions involving geometry: A step towards efficient shape optimization , 2014 .

[55]  Pierre Ladevèze,et al.  Proper Generalized Decomposition applied to linear acoustic: A new tool for broad band calculation , 2014 .

[56]  Pierre Ladevèze,et al.  On the verification of model reduction methods based on the proper generalized decomposition , 2011 .

[57]  David Néron,et al.  A rational strategy for the resolution of parametrized problems in the PGD framework , 2013 .

[58]  Lawrence Sirovich,et al.  Karhunen–Loève procedure for gappy data , 1995 .

[59]  M. A. Akanbi,et al.  Numerical solution of initial value problems in differential - algebraic equations , 2005 .

[60]  Charbel Farhat,et al.  The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows , 2012, J. Comput. Phys..

[61]  G. Reddien,et al.  On the reduced basis method , 1995 .

[62]  Francisco Chinesta,et al.  Solving parametric complex fluids models in rheometric flows , 2010 .

[63]  Clarence W. Rowley,et al.  Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.

[64]  B. Haasdonk,et al.  REDUCED BASIS METHOD FOR FINITE VOLUME APPROXIMATIONS OF PARAMETRIZED LINEAR EVOLUTION EQUATIONS , 2008 .

[65]  F. Chinesta,et al.  First steps towards an advanced simulation of composites manufacturing by automated tape placement , 2014 .

[66]  Pierre Ladevèze,et al.  A PGD-based homogenization technique for the resolution of nonlinear multiscale problems , 2013 .

[67]  Z. Bai Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems , 2002 .

[68]  F. Chinesta,et al.  On the Convergence of a Greedy Rank-One Update Algorithm for a Class of Linear Systems , 2010 .

[69]  Elías Cueto,et al.  Proper generalized decomposition of time‐multiscale models , 2012 .

[70]  Anthony Nouy,et al.  Ideal minimal residual-based proper generalized decomposition for non-symmetric multi-field models – Application to transient elastodynamics in space-time domain , 2014 .

[71]  F. Chinesta,et al.  A separated representation of an error indicator for the mesh refinement process under the proper generalized decomposition framework , 2014, Computational Mechanics.

[72]  S. Ravindran,et al.  A Reduced-Order Method for Simulation and Control of Fluid Flows , 1998 .

[73]  R.M.M. Mattheij,et al.  BDF Compound-Fast multirate transient analysis with adaptive stepsize control , 2007 .

[74]  Jacob K. White,et al.  An Arnoldi approach for generation of reduced-order models for turbomachinery , 2000 .

[75]  David Dureisseix,et al.  A computational strategy for poroelastic problems with a time interface between coupled physics , 2008 .

[76]  S. Volkwein,et al.  MODEL REDUCTION USING PROPER ORTHOGONAL DECOMPOSITION , 2008 .

[77]  A. Patera,et al.  A Successive Constraint Linear Optimization Method for Lower Bounds of Parametric Coercivity and Inf-Sup Stability Constants , 2007 .

[78]  C. Allery,et al.  Proper Generalized Decomposition method for incompressible Navier-Stokes equations with a spectral discretization , 2013, Appl. Math. Comput..

[79]  Luís Miguel Silveira,et al.  Poor man's TBR: a simple model reduction scheme , 2004, Proceedings Design, Automation and Test in Europe Conference and Exhibition.

[80]  Gianluigi Rozza,et al.  Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Parabolic PDEs: Application to Real‐Time Bayesian Parameter Estimation , 2010 .

[81]  J. Marsden,et al.  A subspace approach to balanced truncation for model reduction of nonlinear control systems , 2002 .

[82]  R.M.M. Mattheij,et al.  Adjoint transient sensitivity analysis in circuit simulation , 2007 .

[83]  David González,et al.  Real‐time direct integration of reduced solid dynamics equations , 2014 .

[84]  L. Gallimard,et al.  Proper Generalized Decomposition and layer-wise approach for the modeling of composite plate structures , 2013 .

[85]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[86]  M. N. Vrahatis,et al.  Ordinary Differential Equations In Theory and Practice , 1997, IEEE Computational Science and Engineering.

[87]  Werner C. Rheinboldt,et al.  On the theory and error estimation of the reduced basis method for multi-parameter problems , 1993 .

[88]  Gustaf Söderlind,et al.  Automatic Control and Adaptive Time-Stepping , 2002, Numerical Algorithms.

[89]  H. Miura,et al.  An approximate analysis technique for design calculations , 1971 .

[90]  Bratislav Tasic,et al.  Automatic Partitioning for Multirate Methods , 2007 .

[91]  A. Nouy A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations , 2007 .

[92]  Mathilde Chevreuil,et al.  Fictitious domain method and separated representations for the solution of boundary value problems on uncertain parameterized domains , 2011 .

[93]  Anthony T. Patera,et al.  A Priori Convergence Theory for Reduced-Basis Approximations of Single-Parameter Elliptic Partial Differential Equations , 2002, J. Sci. Comput..

[94]  Thomas Voss,et al.  Model Reduction for Nonlinear Differential-Algebraic Equations , 2007 .

[95]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[96]  Bratislav Tasic,et al.  Multirate with dynamical partitioning for transient analysis , 2007 .

[97]  Anders Sjö Analysis of Computational Algorithms for Linear Multistep Methods , 1999 .

[98]  Janet S. Peterson,et al.  The Reduced Basis Method for Incompressible Viscous Flow Calculations , 1989 .

[99]  L. Gallimard,et al.  Explicit solutions for the modeling of laminated composite plates with arbitrary stacking sequences , 2014 .

[100]  David Néron,et al.  Time‐space PGD for the rapid solution of 3D nonlinear parametrized problems in the many‐query context , 2015 .

[101]  P. Rentrop,et al.  Partitioning and Multirate Strategies in Latent Electric Circuits , 1994 .

[102]  David Néron,et al.  Virtual charts of solutions for parametrized nonlinear equations , 2014 .

[103]  J. Peraire,et al.  Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .

[104]  C. W. Gear,et al.  Multirate linear multistep methods , 1984 .

[105]  Gianluigi Rozza,et al.  Generalized Reduced Basis Methods and n-Width Estimates for the Approximation of the Solution Manifold of Parametric PDEs , 2013 .

[106]  Antonio Falcó,et al.  A Proper Generalized Decomposition for the solution of elliptic problems in abstract form by using a functional Eckart–Young approach , 2011 .

[107]  Andreas Bartel,et al.  A multirate W-method for electrical networks in state-space formulation , 2002 .

[108]  Pierre Ladevèze,et al.  A scalable time–space multiscale domain decomposition method: adaptive time scale separation , 2010 .

[109]  Pierre Ladevèze,et al.  RADIAL-TYPE APPROXIMATION TECHNIQUE FOR A SPACE-TIME MULTISCALE COMPUTATIONAL STRATEGY , 2004 .

[110]  Adrien Leygue,et al.  Separated representations of 3D elastic solutions in shell geometries , 2014, Adv. Model. Simul. Eng. Sci..

[111]  David Dureisseix,et al.  A 2-level and mixed domain decomposition approach for structural analysis , 1998 .

[112]  Gianluigi Rozza,et al.  Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants , 2013, Numerische Mathematik.

[113]  Francisco Chinesta,et al.  On the space-time separated representation of integral linear viscoelastic models , 2015 .

[114]  Gianluigi Rozza,et al.  Fundamentals of reduced basis method for problems governed by parametrized PDEs and applications , 2014 .

[115]  Taehyoun Kim,et al.  Frequency-Domain Karhunen -Loeve Method and Its Application to Linear Dynamic Systems , 1998 .

[116]  Roland W. Freund,et al.  Efficient linear circuit analysis by Pade´ approximation via the Lanczos process , 1994, EURO-DAC '94.

[117]  L. Gallimard,et al.  Composite beam finite element based on the Proper Generalized Decomposition , 2012 .

[118]  A. Nouy Generalized spectral decomposition method for solving stochastic finite element equations : Invariant subspace problem and dedicated algorithms , 2008 .

[119]  J. Hesthaven,et al.  Certified Reduced Basis Methods for Parametrized Partial Differential Equations , 2015 .

[120]  A. Patera,et al.  A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations , 2005 .

[121]  C. Farhat,et al.  Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity , 2008 .

[122]  Adrien Leygue,et al.  On the solution of the multidimensional Langer's equation using the proper generalized decomposition method for modeling phase transitions , 2011 .

[123]  T. Lelièvre,et al.  Greedy algorithms for high-dimensional non-symmetric linear problems , 2012, 1210.6688.

[124]  Anthony Nouy,et al.  Generalized spectral decomposition for stochastic nonlinear problems , 2009, J. Comput. Phys..

[125]  E. Cancès,et al.  Computational quantum chemistry: A primer , 2003 .

[126]  E. Süli,et al.  Numerical Solution of Ordinary Differential Equations , 2021, Foundations of Space Dynamics.

[127]  S.H.M.J. Houben,et al.  Time domain analog circuit simulation , 2006 .

[128]  Anders Logg,et al.  Multi-Adaptive Galerkin Methods for ODEs I , 2002, SIAM J. Sci. Comput..

[129]  D. D. Kosambi Statistics in Function Space , 2016 .

[130]  Francisco Chinesta,et al.  Parametric solution of the Rayleigh-Benard convection model by using the PGD: Application to nanofluids , 2015 .

[131]  E.J.W. ter Maten,et al.  Multirate hierarchical time integration for electronic circuits , 2005 .

[132]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[133]  Benjamin Peherstorfer,et al.  Dynamic data-driven reduced-order models , 2015 .

[134]  Manuel Laso,et al.  On the reduction of stochastic kinetic theory models of complex fluids , 2007 .

[135]  Siep Weiland,et al.  Missing Point Estimation in Models Described by Proper Orthogonal Decomposition , 2004, IEEE Transactions on Automatic Control.

[136]  Y. Maday,et al.  Results and Questions on a Nonlinear Approximation Approach for Solving High-dimensional Partial Differential Equations , 2008, 0811.0474.

[137]  D. Rovas,et al.  Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods , 2002 .

[138]  A. Hay,et al.  Local improvements to reduced-order models using sensitivity analysis of the proper orthogonal decomposition , 2009, Journal of Fluid Mechanics.

[139]  Benjamin Peherstorfer,et al.  Online Adaptive Model Reduction for Nonlinear Systems via Low-Rank Updates , 2015, SIAM J. Sci. Comput..

[140]  P. Stern,et al.  Automatic choice of global shape functions in structural analysis , 1978 .

[141]  L. Sirovich TURBULENCE AND THE DYNAMICS OF COHERENT STRUCTURES PART I : COHERENT STRUCTURES , 2016 .

[142]  Gustaf Söderlind,et al.  Digital filters in adaptive time-stepping , 2003, TOMS.

[143]  Pierre Ladevèze,et al.  PGD-VTCR: A Reduced Order Model Technique to Solve Medium Frequency Broad Band Problems on Complex Acoustical Systems , 2015 .

[144]  Linda R. Petzold,et al.  Approved for public release; further dissemination unlimited Error Estimation for Reduced Order Models of Dynamical Systems ∗ , 2003 .

[145]  Gianluigi Rozza,et al.  Computational Reduction for Parametrized PDEs: Strategies and Applications , 2012 .

[146]  R.M.M. Mattheij,et al.  Multirate methods for the transient analysis of electrical circuits , 2005 .

[147]  Lawrence T. Pileggi,et al.  RICE: rapid interconnect circuit evaluation using AWE , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[148]  Thomas Henneron,et al.  Proper Generalized Decomposition Method Applied to Solve 3-D Magnetoquasi-Static Field Problems Coupling With External Electric Circuits , 2015, IEEE Transactions on Magnetics.

[149]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids - Part II: Transient simulation using space-time separated representations , 2007 .

[150]  Francisco Chinesta,et al.  A fully deterministic micro-macro simulation of complex flows involving reversible network fluid models , 2010, Math. Comput. Simul..

[151]  C. Lubich From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis , 2008 .

[152]  K. Willcox Unsteady Flow Sensing and Estimation via the Gappy Proper Orthogonal Decomposition , 2004 .

[153]  Nicolás Montés,et al.  Numerical strategies for the Galerkin-proper generalized decomposition method , 2013, Math. Comput. Model..

[154]  Werner C. Rheinboldt,et al.  On the Error Behavior of the Reduced Basis Technique for Nonlinear Finite Element Approximations , 1983 .

[155]  G. Rozza,et al.  On the stability of the reduced basis method for Stokes equations in parametrized domains , 2007 .

[156]  Francisco Chinesta,et al.  On the deterministic solution of multidimensional parametric models using the Proper Generalized Decomposition , 2010, Math. Comput. Simul..

[157]  Cédric Leblond,et al.  A priori space–time separated representation for the reduced order modeling of low Reynolds number flows , 2014 .

[158]  A. Ammar,et al.  Simulation of Heat and Mass Transport in a Square Lid-Driven Cavity with Proper Generalized Decomposition (PGD) , 2013 .

[159]  F. Chinesta,et al.  The Proper Generalized Decomposition (PGD) as a numerical procedure to solve 3D cracked plates in linear elastic fracture mechanics , 2013 .

[160]  P. Astrid,et al.  Reduction of process simulation models : a proper orthogonal decomposition approach , 2004 .

[161]  Joost Rommes,et al.  Jacobi-Davidson Methods and Preconditioning with Applications in Pole-zero Analysis , 2004 .

[162]  A. Patera,et al.  Reduced-basis approximation of the viscous Burgers equation: rigorous a posteriori error bounds , 2003 .

[163]  Pierre Ladevèze,et al.  On a mixed and multiscale domain decomposition method , 2007 .

[164]  A. Richard Newton,et al.  Mixed-mode simulation and analog multilevel simulation , 1994, The Kluwer international series in engineering and computer science.

[165]  Anthony T. Patera,et al.  Global a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptic partial differential equations , 2002 .

[166]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[167]  P. Astrid,et al.  Application of least squares MPE technique in the reduced order modeling of electrical circuits , 2006 .

[168]  Amine Ammar,et al.  The proper generalized decomposition for the simulation of delamination using cohesive zone model , 2014 .

[169]  Claudio Canuto,et al.  A Posteriori Error Analysis of the Reduced Basis Method for Nonaffine Parametrized Nonlinear PDEs , 2009, SIAM J. Numer. Anal..

[170]  Pierre Ladevèze,et al.  Mécanique non linéaire des structures , 1997 .

[171]  Elías Cueto,et al.  Coupling finite elements and proper generalized decompositions , 2011 .

[172]  Peter Benner,et al.  Interpolatory Projection Methods for Parameterized Model Reduction , 2011, SIAM J. Sci. Comput..

[173]  Ronald A. DeVore,et al.  Some remarks on greedy algorithms , 1996, Adv. Comput. Math..

[174]  David Dureisseix,et al.  A computational strategy for thermo‐poroelastic structures with a time–space interface coupling , 2008 .

[175]  Adrien Leygue,et al.  A First Step Towards the Use of Proper General Decomposition Method for Structural Optimization , 2010 .

[176]  Adrien Leygue,et al.  Arlequin based PGD domain decomposition , 2014 .

[177]  Kjell Gustafsson,et al.  Control-theoretic techniques for stepsize selection in implicit Runge-Kutta methods , 1991, TOMS.

[178]  Shmj Stephan Houben,et al.  Circuits in motion : the numerical simulation of electrical oscillators , 2003 .

[179]  R. Freund Krylov-subspace methods for reduced-order modeling in circuit simulation , 2000 .

[180]  Lawrence T. Pileggi,et al.  Asymptotic waveform evaluation for timing analysis , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[181]  P. Ladevèze,et al.  A modular approach to structure assembly computations: application to contact problems , 1996 .

[182]  Francisco Chinesta,et al.  Recent Advances and New Challenges in the Use of the Proper Generalized Decomposition for Solving Multidimensional Models , 2010 .

[183]  Francisco Chinesta,et al.  The Nanometric and Micrometric Scales of the Structure and Mechanics of Materials Revisited: An Introduction to the Challenges of Fully Deterministic Numerical Descriptions , 2008 .

[184]  Pierre Ladevèze,et al.  The Variational Theory of Complex Rays: An answer to the resolution of mid-frequency 3D engineering problems , 2013 .

[185]  A. Quarteroni,et al.  Numerical solution of parametrized Navier–Stokes equations by reduced basis methods , 2007 .

[186]  Ahmed K. Noor,et al.  Reduced Basis Technique for Nonlinear Analysis of Structures , 1980 .

[187]  J. J. Rusch Speed up for Pstar by using numerical differential formula ( NDF ) instead of backward differential formula ( BDF ) Intermediate report , 2022 .

[188]  J. M. Watt Numerical Initial Value Problems in Ordinary Differential Equations , 1972 .

[189]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[190]  Nguyen Ngoc Cuong,et al.  Certified Real-Time Solution of Parametrized Partial Differential Equations , 2005 .

[191]  Virginie Ehrlacher,et al.  CONVERGENCE RESULTS ON GREEDY ALGORITHMS FOR HIGH-DIMENSIONAL EIGENVALUE PROBLEMS ∗ , 2014 .

[192]  Endre Süli,et al.  Greedy Approximation of High-Dimensional Ornstein–Uhlenbeck Operators , 2011, Found. Comput. Math..

[193]  Karen Veroy,et al.  Certified Reduced Basis Methods for Parametrized Saddle Point Problems , 2012, SIAM J. Sci. Comput..

[194]  Pierre Ladevèze,et al.  Nonlinear Computational Structural Mechanics , 1999 .

[195]  J. P. Moitinho de Almeida,et al.  A basis for bounding the errors of proper generalised decomposition solutions in solid mechanics , 2013 .

[196]  Lawrence T. Pileggi,et al.  PRIMA: passive reduced-order interconnect macromodeling algorithm , 1998, 1997 Proceedings of IEEE International Conference on Computer Aided Design (ICCAD).

[197]  Bratislav Tasic,et al.  Error analysis of BDF compound-fast multirate method for differential-algebraic equations , 2006 .

[198]  K. Willcox,et al.  Aerodynamic Data Reconstruction and Inverse Design Using Proper Orthogonal Decomposition , 2004 .

[199]  Stig Skelboe Stability properties of backward euler multirate formulas , 1989 .

[200]  F. Chinesta,et al.  Recent advances on the use of separated representations , 2009 .

[201]  Francisco Chinesta,et al.  Non-incremental transient solution of the Rayleigh–Bénard convection model by using the PGD , 2013 .

[202]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids , 2006 .

[203]  Stig Skelboe,et al.  Stability of backward Euler multirate methods and convergence of waveform relaxation , 1992 .

[204]  R.M.M. Mattheij,et al.  A general compound multirate method for circuit simulation problems , 2006 .

[205]  David Dureisseix,et al.  A multi-time-scale strategy for multiphysics problems: Application to poroelasticity , 2003 .

[206]  B. Mokdad,et al.  On the Simulation of Kinetic Theory Models of Complex Fluids Using the Fokker-Planck Approach , 2007 .

[207]  Gianluigi Rozza,et al.  Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’ equation , 2009 .

[208]  Michal Rewienski,et al.  A trajectory piecewise-linear approach to model order reduction of nonlinear dynamical systems , 2003 .

[209]  Wolfgang Mathis,et al.  Integration system as adaptive control system , 1994, Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS '94.

[210]  Serkan Gugercin,et al.  Interpolatory Model Reduction of Large-Scale Dynamical Systems , 2010 .

[211]  M. Hinze,et al.  Proper Orthogonal Decomposition Surrogate Models for Nonlinear Dynamical Systems: Error Estimates and Suboptimal Control , 2005 .

[212]  Anders Logg,et al.  Multi-Adaptive Galerkin Methods for ODEs II: implementation and Applications , 2003, SIAM J. Sci. Comput..

[213]  Elías Cueto,et al.  Reduction of the chemical master equation for gene regulatory networks using proper generalized decompositions , 2012, International journal for numerical methods in biomedical engineering.

[214]  A. Ammar,et al.  Space–time proper generalized decompositions for the resolution of transient elastodynamic models , 2013 .

[215]  Jacob K. White,et al.  A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices , 2001, IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281).

[216]  J. Hesthaven,et al.  Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations , 2007 .

[217]  A. Nouy A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equations , 2010 .

[218]  P. Astrid,et al.  On the Construction of POD Models from Partial Observations , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[219]  Earl H. Dowell,et al.  Modeling of Fluid-Structure Interaction , 2001 .

[220]  Willem Hundsdorfer,et al.  A multirate time stepping strategy for stiff ordinary differential equations , 2007 .

[221]  Pedro Díez,et al.  An error estimator for separated representations of highly multidimensional models , 2010 .

[222]  Gianluigi Rozza,et al.  Reduced-basis methods for elliptic equations in sub-domains with a posteriori error bounds and adaptivity , 2005 .

[223]  L. Gallimard,et al.  Assessment of variable separation for finite element modeling of free edge effect for composite plates , 2015 .

[224]  K. Kunisch,et al.  Control of the Burgers Equation by a Reduced-Order Approach Using Proper Orthogonal Decomposition , 1999 .

[225]  ter Ejw Jan Maten,et al.  Digital Linear Control Theory for Automatic Stepsize Control , 2006 .

[226]  Adrien Leygue,et al.  Methodological approach to efficient modeling and optimization of thermal processes taking place in a die: application to pultrusion , 2011 .

[227]  Thomas Henneron,et al.  Model order reduction of quasi-static problems based on POD and PGD approaches , 2013 .

[228]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[229]  Ahmed K. Noor,et al.  On making large nonlinear problems small , 1982 .

[230]  Gianluigi Rozza,et al.  Comparison Between Reduced Basis and Stochastic Collocation Methods for Elliptic Problems , 2014, J. Sci. Comput..

[231]  A. Prothero,et al.  On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations , 1974 .

[232]  B. Schrefler,et al.  Towards a framework for non-linear thermal models in shell domains , 2013 .

[233]  Icíar Alfaro,et al.  Computational vademecums for the real-time simulation of haptic collision between nonlinear solids , 2015 .

[234]  Stefan Volkwein,et al.  Error estimates for abstract linear–quadratic optimal control problems using proper orthogonal decomposition , 2008, Comput. Optim. Appl..

[235]  Meei Yow Lin Lee Estimation of the error in the reduced basis method solution of differential algebraic equation systems , 1991 .

[236]  Timothy Nigel Phillips,et al.  On the solution of the Fokker–Planck equation using a high-order reduced basis approximation , 2009 .

[237]  M. Loève Probability theory : foundations, random sequences , 1955 .

[238]  Adrien Leygue,et al.  The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer , 2013 .

[239]  Antonio Falcó,et al.  Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces , 2011, Numerische Mathematik.

[240]  Jean-Claude Grandidier,et al.  A reduced simulation applied to the viscoelastic fatigue of polymers , 2014 .

[241]  Antonio Huerta Cerezuela Proper Generalized Decomposition based dynamic data-driven control of thermal processes , 2012 .

[242]  Virginie Ehrlacher,et al.  Convergence of a greedy algorithm for high-dimensional convex nonlinear problems , 2010, 1004.0095.

[243]  A. Nouy Proper Generalized Decompositions and Separated Representations for the Numerical Solution of High Dimensional Stochastic Problems , 2010 .

[244]  F. Chinesta,et al.  A Short Review in Model Order Reduction Based on Proper Generalized Decomposition , 2018 .

[245]  K. Kunisch,et al.  Optimal snapshot location for computing POD basis functions , 2010 .

[246]  S Niroomandi,et al.  Real‐time simulation of biological soft tissues: a PGD approach , 2013, International journal for numerical methods in biomedical engineering.

[247]  Elías Cueto,et al.  Non incremental strategies based on separated representations: applications in computational rheology , 2010 .

[248]  P. Ladevèze,et al.  On a Multiscale Computational Strategy with Time and Space Homogenization for Structural Mechanics , 2003 .

[249]  ter Ejw Jan Maten,et al.  Aspects of multirate time integration methods in circuit simulation problems , 2006 .

[250]  F. Chinesta,et al.  Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity , 2012 .

[251]  A. Nouy Recent Developments in Spectral Stochastic Methods for the Numerical Solution of Stochastic Partial Differential Equations , 2009 .

[252]  Kenji Fujimoto,et al.  Model Reduction of Nonlinear Differential-Algebraic Equations , 2007 .

[253]  Karen Willcox,et al.  Model Reduction for Large-Scale Systems with High-Dimensional Parametric Input Space , 2008, SIAM J. Sci. Comput..

[254]  L. Gallimard,et al.  Coupling finite element and reliability analysis through proper generalized decomposition model reduction , 2013 .

[255]  A. Patera,et al.  Certified real‐time solution of the parametrized steady incompressible Navier–Stokes equations: rigorous reduced‐basis a posteriori error bounds , 2005 .

[256]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[257]  Jacqueline Scherpen,et al.  SCIENTIFIC COMPUTING IN ELECTRICAL ENGINEERING , 2007 .

[258]  P.B.L. Meijer,et al.  Neural network applications in device and subcircuit modelling for circuit simulation , 1996 .

[259]  A. Noor Recent advances in reduction methods for nonlinear problems. [in structural mechanics , 1981 .

[260]  Elías Cueto,et al.  Real‐time monitoring of thermal processes by reduced‐order modeling , 2015 .

[261]  Etienne Pruliere,et al.  3D simulation of laminated shell structures using the Proper Generalized Decomposition , 2014 .

[262]  Pierre Villon,et al.  Non-incremental boundary element discretization of parabolic models based on the use of the proper generalized decompositions , 2011 .