The effects of orientational and energetic disorder on Forster energy migration along a one-dimensional lattice

Numerical simulations of exciton migration along a one-dimensional lattice via Forster energy transfer are reported. The roles of static Gaussian energetic disorder and transition dipole orientational disorder are investigated. Both disorder mechanisms result in subdiffusive behavior during the initial phase of energy migration, tending asymptotically to normal diffusion. The dependence of the subdiffusion parameters on the inhomogeneous linewidth and intersite spacing is examined. Depending on the exciton lifetime, subdiffusive motion may dominate the exciton displacement behavior, and it becomes problematic to use normal diffusion theory to make even qualitative predictions about the exciton motion.

[1]  A. Holzwarth,et al.  Kinetic modeling of exciton migration in photosynthetic systems. 2. Simulations of excitation dynamics in two-dimensional photosystem I core antenna/reaction center complexes. , 1994, Biophysical journal.

[2]  A. Penzkofer,et al.  CHEMICAL PHYSICS LETTERS , 1976 .

[3]  S. Fedorenko,et al.  What are the GAF and LAF approaches in essence , 1985 .

[4]  A. Heeger,et al.  Beyond superquenching: Hyper-efficient energy transfer from conjugated polymers to gold nanoparticles , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[5]  K. Katsuura Excitation Migration in One‐Dimensional Molecular Random Lattices , 1964 .

[6]  M. Schlosser,et al.  Exciton migration by ultrafast Förster transfer in highly doped matrixes. , 2006, The journal of physical chemistry. B.

[7]  G. Fleming,et al.  Simulations of the temperature dependence of energy transfer in the PSI core antenna. , 1992, Biophysical journal.

[8]  Gregory D Scholes,et al.  Long-range resonance energy transfer in molecular systems. , 2003, Annual review of physical chemistry.

[9]  Seogjoo J. Jang,et al.  Effects of excitation migration and translational diffusion in the luminescence quenching dynamics , 1995 .

[10]  T. Swager,et al.  Conjugated polymer-based chemical sensors. , 2000, Chemical reviews.

[11]  Stephen R. Forrest,et al.  Small molecular weight organic thin-film photodetectors and solar cells , 2003 .

[12]  R. Friend,et al.  Exciton migration in a polythiophene: probing the spatial and energy domain by line-dipole Forster-type energy transfer. , 2005, The Journal of chemical physics.

[13]  J. Dudkiewicz,et al.  Time decay and fluorescence quenching in a one-dimensional lattice , 1991 .

[14]  H. C. Andersen,et al.  Electronic excited state transport in solution , 1979 .

[15]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[16]  R. Marcus On the Theory of Shifts and Broadening of Electronic Spectra of Polar Solutes in Polar Media , 1965 .

[17]  A. Shreve,et al.  ENERGY-TRANSFER MODELING FOR THE RATIONAL DESIGN OF MULTIPORPHYRIN LIGHT-HARVESTING ARRAYS , 1998 .

[18]  M. Silver,et al.  Dispersive exciton transport in a hopping system with gaussian energy distribution , 1980 .

[19]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[20]  M. Fayer,et al.  Dispersive excitation transport at elevated temperatures (50–298 K): Experiments and theory , 1990 .

[21]  R. Miller,et al.  On the Förster model: Computational and ultrafast studies of electronic energy transport , 1997 .

[22]  T. G. Owens,et al.  Excitation transport and trapping on spectrally disordered lattices. , 1989, Biophysical journal.

[23]  R. Zwanzig,et al.  Förster migration of electronic excitation between randomly distributed molecules , 1978 .

[24]  T. Pullerits,et al.  Kinetic model of primary energy transfer and trapping in photosynthetic membranes. , 1992, Biophysical journal.

[25]  Vladimir Arkhipov,et al.  On the role of spectral diffusion of excitons in sensitized photoconduction in conjugated polymers , 2004 .

[26]  C. Tanford Macromolecules , 1994, Nature.

[27]  L. Chen,et al.  Fluorescence superquenching of conjugated polyelectrolytes: applications for biosensing and drug discovery , 2005 .

[28]  M. Melus,et al.  Theoretical study of the migration of electronic excitation along the polymer chains in conformation motion , 1994 .

[29]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[30]  Jens Hübner,et al.  Dispersive Relaxation Dynamics of Photoexcitations in a Polyfluorene Film Involving Energy Transfer: Experiment and Monte Carlo Simulations , 2001 .

[31]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[32]  C. Bardeen,et al.  The effects of connectivity, coherence, and trapping on energy transfer in simple light-harvesting systems studied using the Haken-Strobl model with diagonal disorder. , 2004, The Journal of chemical physics.

[33]  Miguel A. Rodriguez,et al.  Excitations in one-dimensional lattices with traps: Exact results and simulations , 1997 .

[34]  J. Jortner,et al.  Electronic energy transport in substitutionally disordered molecular crystals , 1980 .

[35]  H. C. Andersen,et al.  Electronic excited‐state transport and trapping in solution , 1982 .