Oral administration of antibiotics increased the potential mobility of bacterial resistance genes in the gut of the fish Piaractus mesopotamicus

[1]  D. Barceló,et al.  Abundance of antibiotic resistance genes and bacterial community composition in wild freshwater fish species. , 2018, Chemosphere.

[2]  H. Jang,et al.  Prevalence of antibiotic resistance genes from effluent of coastal aquaculture, South Korea. , 2018, Environmental pollution.

[3]  Andrzej Dziembowski,et al.  PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures , 2018, Nucleic acids research.

[4]  S. Rath,et al.  Depletion study and estimation of withdrawal periods for florfenicol and florfenicol amine in pacu (Piaractus mesopotamicus) , 2018 .

[5]  Jiayin Ling,et al.  Evolution of corresponding resistance genes in the water of fish tanks with multiple stresses of antibiotics and heavy metals. , 2017, Water research.

[6]  Dong Yang,et al.  Aquatic animals promote antibiotic resistance gene dissemination in water via conjugation: Role of different regions within the zebra fish intestinal tract, and impact on fish intestinal microbiota , 2017, Molecular ecology.

[7]  S. Altun,et al.  Molecular characterization and antimicrobial resistance profile of atypical Citrobacter gillenii and Citrobacter sp. isolated from diseased rainbow trout (Oncorhynchus mykiss). , 2017, Journal of global antimicrobial resistance.

[8]  Jingwen Chen,et al.  Fishmeal Application Induces Antibiotic Resistance Gene Propagation in Mariculture Sediment. , 2017, Environmental science & technology.

[9]  T. Halasa,et al.  Association between selected antimicrobial resistance genes and antimicrobial exposure in Danish pig farms , 2017, Scientific Reports.

[10]  Daniel J. Nasko,et al.  The In-Feed Antibiotic Carbadox Induces Phage Gene Transcription in the Swine Gut Microbiome , 2017, mBio.

[11]  T. Lithgow,et al.  Extensively Drug-Resistant Klebsiella pneumoniae Causing Nosocomial Bloodstream Infections in China: Molecular Investigation of Antibiotic Resistance Determinants, Informing Therapy, and Clinical Outcomes , 2017, Front. Microbiol..

[12]  Robert D. Stedtfeld,et al.  The Resistome of Farmed Fish Feces Contributes to the Enrichment of Antibiotic Resistance Genes in Sediments below Baltic Sea Fish Farms , 2017, Front. Microbiol..

[13]  Raymond Lo,et al.  CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database , 2016, Nucleic Acids Res..

[14]  José Luis Balcázar,et al.  Exploring the contribution of bacteriophages to antibiotic resistance. , 2017, Environmental pollution.

[15]  H. Ingmer,et al.  Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells , 2016, Nature Communications.

[16]  Jeffrey H. Miller,et al.  Mutational Consequences of Ciprofloxacin in Escherichia coli , 2016, Antimicrobial Agents and Chemotherapy.

[17]  Rand R. Wilcox,et al.  Understanding and Applying Basic Statistical Methods Using R , 2016 .

[18]  J. O'Neill,et al.  Tackling drug-resistant infections globally: final report and recommendations , 2016 .

[19]  Anders Krogh,et al.  Fast and sensitive taxonomic classification for metagenomics with Kaiju , 2016, Nature Communications.

[20]  L. Orlando,et al.  AdapterRemoval v2: rapid adapter trimming, identification, and read merging , 2016, BMC Research Notes.

[21]  Robert D. Finn,et al.  The Pfam protein families database: towards a more sustainable future , 2015, Nucleic Acids Res..

[22]  Tong Zhang,et al.  Antibiotics, Antibiotic Resistance Genes, and Bacterial Community Composition in Fresh Water Aquaculture Environment in China , 2015, Microbial Ecology.

[23]  R. Halden,et al.  Does the Recent Growth of Aquaculture Create Antibiotic Resistance Threats Different from those Associated with Land Animal Production in Agriculture? , 2015, The AAPS Journal.

[24]  P. Siguier,et al.  Everyman's Guide to Bacterial Insertion Sequences , 2015, Microbiology spectrum.

[25]  Chao Xie,et al.  Fast and sensitive protein alignment using DIAMOND , 2014, Nature Methods.

[26]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[27]  Gerard D. Wright,et al.  The antibiotic resistome: what's new? , 2014, Current opinion in microbiology.

[28]  Michael R Gillings,et al.  Integrons: Past, Present, and Future , 2014, Microbiology and Molecular Reviews.

[29]  T. M. P. Cruz,et al.  Histochemical distribution of intestinal enzymes of juvenile pacu (Piaractus mesopotamicus) fed lyophilized bovine colostrum , 2014, Fish Physiology and Biochemistry.

[30]  H. Sørum,et al.  Antimicrobial resistance and antimicrobial resistance genes in marine bacteria from salmon aquaculture and non-aquaculture sites. , 2014, Environmental microbiology.

[31]  Satoru Suzuki,et al.  Sulphonamide and Trimethoprim Resistance Genes Persist in Sediments at Baltic Sea Aquaculture Farms but Are Not Detected in the Surrounding Environment , 2014, PloS one.

[32]  Luis Miguel Rodriguez-Rojas,et al.  Nonpareil: a redundancy-based approach to assess the level of coverage in metagenomic datasets , 2014, Bioinform..

[33]  A. Barnes,et al.  Dietary soybean protein concentrate-induced intestinal disorder in marine farmed Atlantic salmon, Salmo salar is associated with alterations in gut microbiota. , 2013, Veterinary microbiology.

[34]  A. Buschmann,et al.  Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. , 2013, Environmental microbiology.

[35]  S. Eddy,et al.  Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions , 2013, Nucleic acids research.

[36]  Teresa M. Coque,et al.  Antibiotic resistance shaping multi-level population biology of bacteria , 2013, Front. Microbiol..

[37]  Timothy A. Johnson,et al.  Diverse and abundant antibiotic resistance genes in Chinese swine farms , 2013, Proceedings of the National Academy of Sciences.

[38]  Songnian Hu,et al.  Marine Sediment Bacteria Harbor Antibiotic Resistance Genes Highly Similar to Those Found in Human Pathogens , 2013, Microbial Ecology.

[39]  Gonzalo Riadi,et al.  TnpPred: A Web Service for the Robust Prediction of Prokaryotic Transposases , 2012, Comparative and functional genomics.

[40]  H. Sørum,et al.  Prevalence of antibiotic resistance genes in the bacterial flora of integrated fish farming environments of Pakistan and Tanzania. , 2012, Environmental science & technology.

[41]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[42]  Robert D. Stedtfeld,et al.  In-feed antibiotic effects on the swine intestinal microbiome , 2012, Proceedings of the National Academy of Sciences.

[43]  Michael R Gillings,et al.  Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. , 2011, FEMS microbiology reviews.

[44]  C. Huttenhower,et al.  Metagenomic biomarker discovery and explanation , 2011, Genome Biology.

[45]  R. Edwards,et al.  Fast Identification and Removal of Sequence Contamination from Genomic and Metagenomic Datasets , 2011, PloS one.

[46]  Satoru Suzuki,et al.  Tetracycline resistance genes persist at aquaculture farms in the absence of selection pressure. , 2011, Environmental science & technology.

[47]  P. Nordmann,et al.  Extremely Drug-Resistant Citrobacter freundii Isolate Producing NDM-1 and Other Carbapenemases Identified in a Patient Returning from India , 2010, Antimicrobial Agents and Chemotherapy.

[48]  É. Jouy,et al.  Plasmid-borne florfenicol and ceftiofur resistance encoded by the floR and blaCMY-2 genes in Escherichia coli isolates from diseased cattle in France. , 2010, Journal of medical microbiology.

[49]  Robert A. Edwards,et al.  Transposases are the most abundant, most ubiquitous genes in nature , 2010, Nucleic acids research.

[50]  L. Morelli,et al.  Transfer of plasmid-mediated resistance to tetracycline in pathogenic bacteria from fish and aquaculture environments. , 2009, FEMS microbiology letters.

[51]  F. Cabello Aquaculture and Florfenicol Resistance in Salmonella enterica Serovar Typhimurium DT104 , 2009, Emerging infectious diseases.

[52]  Alessandra Carattoli,et al.  Resistance Plasmid Families in Enterobacteriaceae , 2009, Antimicrobial Agents and Chemotherapy.

[53]  Peter Smith Aquaculture and Florfenicol Resistance in Salmonella enterica Typhimurium DT104 , 2008, Emerging infectious diseases.

[54]  Ashraf A. Khan,et al.  Isolation and characterization of tetracycline-resistant Citrobacter spp. from catfish. , 2008, Food microbiology.

[55]  Christian von Mering,et al.  eggNOG: automated construction and annotation of orthologous groups of genes , 2007, Nucleic Acids Res..

[56]  Hannah M. Wexler,et al.  Bacteroides: the Good, the Bad, and the Nitty-Gritty , 2007, Clinical Microbiology Reviews.

[57]  Yan Boucher,et al.  Integrons: mobilizable platforms that promote genetic diversity in bacteria. , 2007, Trends in microbiology.

[58]  F. Aarestrup,et al.  IS21-558 Insertion Sequences Are Involved in the Mobility of the Multiresistance Gene cfr , 2006, Antimicrobial Agents and Chemotherapy.

[59]  F. Cabello,et al.  Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. , 2006, Environmental microbiology.

[60]  C. Thorin,et al.  Survey of antibiotic resistance in an integrated marine aquaculture system under oxolinic acid treatment. , 2006, FEMS microbiology ecology.

[61]  Laura S. Frost,et al.  Mobile genetic elements: the agents of open source evolution , 2005, Nature Reviews Microbiology.

[62]  A. Carattoli,et al.  Plasmid-mediated florfenicol and ceftriaxone resistance encoded by the floR and bla(CMY-2) genes in Salmonella enterica serovars Typhimurium and Newport isolated in the United States. , 2004, FEMS microbiology letters.

[63]  H. Synovex FREEDOM OF INFORMATION SUMMARY SUPPLEMENTAL NEW ANIMAL DRUG APPLICATION NADA 011-427 , 2004 .

[64]  N. Caroff,et al.  Detection of an IS21 insertion sequence in the mexR gene of Pseudomonas aeruginosa increasing beta-lactam resistance. , 2004, FEMS microbiology letters.

[65]  M. Ohta,et al.  A small outbreak of third generation cephem-resistant Citrobacter freundii infection on a surgical ward. , 2004, Japanese journal of infectious diseases.

[66]  L. Piddock,et al.  Plasmid-mediated complementation of gyrA and gyrB in fluoroquinolone-resistant Bacteroides fragilis. , 2003, The Journal of antimicrobial chemotherapy.

[67]  P. Collignon,et al.  Species differences in plasmid carriage in the Enterobacteriaceae. , 2003, Plasmid.

[68]  A. Salyers,et al.  The role of Bacteroides conjugative transposons in the dissemination of antibiotic resistance genes , 2002, Cellular and Molecular Life Sciences CMLS.

[69]  Michael Y. Galperin,et al.  The COG database: a tool for genome-scale analysis of protein functions and evolution , 2000, Nucleic Acids Res..

[70]  T. Kogoma Escherichia coli RNA polymerase mutants that enhance or diminish the SOS response constitutively expressed in the absence of RNase HI activity , 1994, Journal of bacteriology.

[71]  T. Stanley Species differences. , 1988, British journal of anaesthesia.

[72]  D. Mount,et al.  The SOS regulatory system of Escherichia coli , 1982, Cell.