Necessary and sufficient conditions of full chaos for expanding Baker-like maps and their use in non-expanding Lorenz maps

Abstract In this work we give necessary and sufficient conditions for a discontinuous expanding map f of an interval into itself, made up of N pieces, to be chaotic in the whole interval. For N = 2 we consider the class of expanding Lorenz maps, for N ≥ 3 a class of maps whose internal branches are onto, called Baker-like. We give the necessary and sufficient conditions for a discontinuous expanding map to be chaotic in the whole interval and persistent under parameter perturbations (robust full chaos in short). These classes of maps represent a suitable first return in non-expanding Lorenz maps. Thus the obtained conditions can be used to prove robust full chaos in non-expanding Lorenz maps. An example from the engineering application is illustrated.

[1]  Claude-Henri Lamarque,et al.  CHUA SYSTEMS WITH DISCONTINUITIES , 1999 .

[2]  Soumitro Banerjee,et al.  Robust Chaos , 1998, chao-dyn/9803001.

[3]  Laura Gardini,et al.  Border collision and fold bifurcations in a family of one-dimensional discontinuous piecewise smooth maps: unbounded chaotic sets , 2015 .

[4]  J. Milnor On the concept of attractor , 1985 .

[5]  Youngna Choi Attractors from one dimensional Lorenz-like maps , 2004 .

[6]  Laura Gardini,et al.  On the complicated price dynamics of a simple one-dimensional discontinuous financial market model with heterogeneous interacting traders , 2010 .

[7]  C. Lamarque,et al.  Dynamics Investigation of Three Coupled Rods with a Horizontal Barrier , 2003 .

[8]  Erik Mosekilde,et al.  Border collisions inside the stability domain of a fixed point , 2016 .

[9]  Renormalization for the boundary of chaos in piecewise monotonic maps with a single discontinuity , 2014 .

[10]  F. Hofbauer The Maximal Measure for Linear Mod One Transformations , 1981 .

[11]  Ale Jan Homburg,et al.  Some global aspects of homoclinic bifurcations of vector fields , 1996 .

[12]  Sze-Bi Hsu,et al.  Lectures on Chaotic Dynamical Systems , 2002 .

[13]  I. Sushko,et al.  Symmetry breaking in a bull and bear financial market model , 2015 .

[14]  O. Makarenkov,et al.  Dynamics and bifurcations of nonsmooth systems: A survey , 2012 .

[15]  Michael Schanz,et al.  Border-Collision bifurcations in 1D Piecewise-Linear Maps and Leonov's Approach , 2010, Int. J. Bifurc. Chaos.

[16]  Colin Sparrow,et al.  Prime and renormalisable kneading invariants and the dynamics of expanding Lorenz maps , 1993 .

[17]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[18]  Claude-Henri Lamarque,et al.  Investigation of Triple Pendulum with Impacts Using Fundamental Solution Matrices , 2004, Int. J. Bifurc. Chaos.

[19]  C. Budd,et al.  Review of ”Piecewise-Smooth Dynamical Systems: Theory and Applications by M. di Bernardo, C. Budd, A. Champneys and P. 2008” , 2020 .

[20]  Jan Awrejcewicz,et al.  The Piston - Connecting Rod - Crankshaft System as a Triple Physical Pendulum with Impacts , 2005, Int. J. Bifurc. Chaos.

[21]  Guo Jingbo,et al.  Breaking a chaotic secure communication scheme. , 2008, Chaos.

[22]  Paul Glendinning,et al.  Zeros of the kneading invariant and topological entropy for Lorenz maps , 1996 .

[23]  A. Nordmark Universal limit mapping in grazing bifurcations , 1997 .

[24]  Gan Lu,et al.  Breaking a chaotic direct sequence spread spectrum communication system using interacting multiple model-unscented Kalman filter. , 2012, Chaos.

[25]  James A. Yorke,et al.  Ergodic transformations from an interval into itself , 1978 .

[26]  Christian Mira,et al.  Chaotic Dynamics in Two-Dimensional Noninvertible Maps , 1996 .

[27]  L. Gardini,et al.  Robust unbounded chaotic attractors in 1D discontinuous maps , 2015 .

[28]  Arne Nordmark,et al.  Non-periodic motion caused by grazing incidence in an impact oscillator , 1991 .

[29]  Scaling properties and renormalization invariants for the “homoclinic quasiperiodicity” , 1993 .

[30]  C. Sparrow,et al.  The classification of topologically expansive lorenz maps , 1990 .

[31]  Procaccia,et al.  First-return maps as a unified renormalization scheme for dynamical systems. , 1987, Physical review. A, General physics.

[32]  David A. Rand,et al.  The topological classification of Lorenz attractors , 1978, Mathematical Proceedings of the Cambridge Philosophical Society.

[33]  Jichen Yang,et al.  Border-collision bifurcations in a generalized piecewise linear-power map , 2011 .

[34]  C. Mira,et al.  Chaotic Dynamics: From the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism , 1987 .

[35]  Laura Gardini,et al.  Onset of chaos in a single-phase power electronic inverter. , 2015, Chaos.

[36]  Paul Glendinning,et al.  Topological conjugation of Lorenz maps by β-transformations , 1990, Mathematical Proceedings of the Cambridge Philosophical Society.

[37]  Claude-Henri Lamarque,et al.  Bifurcation and Chaos in Nonsmooth Mechanical Systems , 2003 .

[38]  Michael Schanz,et al.  Critical homoclinic orbits lead to snap-back repellers , 2011 .

[39]  P. Holmes,et al.  Knots and Orbit Genealogies in Three Dimensional Flows , 1993 .

[40]  L. Gardini,et al.  Nonsmooth one-dimensional maps: some basic concepts and definitions , 2016 .

[41]  W. Parry The lorenz attractor and a related population model , 1979 .

[42]  Fu Xin-chu,et al.  Chaotic behaviour of the general symbolic dynamics , 1992 .