Silk Fibroin Magnetoactive Nanocomposite Films and Membranes for Dynamic Bone Tissue Engineering Strategies

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.mtla.2020.100709.

[1]  V. Correia,et al.  Bioinspired three-dimensional magneto-active scaffolds for bone tissue engineering. , 2019, ACS applied materials & interfaces.

[2]  S. Lanceros‐Méndez,et al.  Silk fibroin bending actuators as an approach towards natural polymer based active materials. , 2019, ACS applied materials & interfaces.

[3]  S. Lanceros‐Méndez,et al.  Optimized silk fibroin piezoresistive nanocomposites for pressure sensing applications based on natural polymers , 2019, Nanoscale advances.

[4]  D. Correia,et al.  Multifunctional magnetically responsive biocomposites based on genetically engineered silk-elastin-like protein , 2018, Composites Part B: Engineering.

[5]  Thomas J Webster,et al.  A review of using green chemistry methods for biomaterials in tissue engineering , 2018, International journal of nanomedicine.

[6]  J. Barandiaran,et al.  Development of Magnetically Active Scaffolds for Bone Regeneration , 2018, Nanomaterials.

[7]  S. Lanceros‐Méndez,et al.  Silk fibroin-magnetic hybrid composite electrospun fibers for tissue engineering applications , 2018 .

[8]  José Luis Vilas,et al.  Relation between fiber orientation and mechanical properties of nano-engineered poly(vinylidene fluoride) electrospun composite fiber mats , 2018 .

[9]  S. Lanceros‐Méndez,et al.  Electroactive poly(vinylidene fluoride)-based structures for advanced applications , 2018, Nature Protocols.

[10]  S. Lanceros‐Méndez,et al.  Advances in Magnetic Nanoparticles for Biomedical Applications , 2018, Advanced healthcare materials.

[11]  Sajedeh Khorshidi,et al.  A review of key challenges of electrospun scaffolds for tissue‐engineering applications , 2016, Journal of tissue engineering and regenerative medicine.

[12]  W. Świȩszkowski,et al.  Nanoengineered biocomposite tricomponent polymer based matrices for bone tissue engineering , 2016 .

[13]  F. M. Gama,et al.  Proving the suitability of magnetoelectric stimuli for tissue engineering applications. , 2016, Colloids and surfaces. B, Biointerfaces.

[14]  Bo Mi Moon,et al.  Wound healing effect of electrospun silk fibroin nanomatrix in burn-model. , 2016, International journal of biological macromolecules.

[15]  K. Numata,et al.  Influence of Water Content on the β-Sheet Formation, Thermal Stability, Water Removal, and Mechanical Properties of Silk Materials. , 2016, Biomacromolecules.

[16]  Senentxu Lanceros-Méndez,et al.  Piezoelectric polymers as biomaterials for tissue engineering applications. , 2015, Colloids and surfaces. B, Biointerfaces.

[17]  F. Ahmad,et al.  An in vivo evaluation of acute toxicity of cobalt ferrite (CoFe2O4) nanoparticles in larval-embryo Zebrafish (Danio rerio). , 2015, Aquatic toxicology.

[18]  C. Laurencin,et al.  Electrospinning of polymer nanofibers for tissue regeneration , 2015 .

[19]  Yuan Cheng,et al.  Structures, mechanical properties and applications of silk fibroin materials , 2015 .

[20]  Senentxu Lanceros-Méndez,et al.  Dynamic piezoelectric stimulation enhances osteogenic differentiation of human adipose stem cells. , 2015, Journal of biomedical materials research. Part A.

[21]  Clarisse Ribeiro,et al.  Piezoelectric poly(vinylidene fluoride) microstructure and poling state in active tissue engineering , 2015 .

[22]  X. Moya,et al.  Magnetoelectric CoFe2O4/polyvinylidene fluoride electrospun nanofibres. , 2015, Nanoscale.

[23]  Ok Joo Lee,et al.  3D electrospun silk fibroin nanofibers for fabrication of artificial skin. , 2015, Nanomedicine : nanotechnology, biology, and medicine.

[24]  Ke Peng,et al.  From macro to micro: structural biomimetic materials by electrospinning , 2014 .

[25]  Baohua Ji,et al.  On the strength of β-sheet crystallites of Bombyx mori silk fibroin , 2014, Journal of The Royal Society Interface.

[26]  Gordana Vunjak-Novakovic,et al.  Electrical stimulation enhances cell migration and integrative repair in the meniscus , 2014, Scientific Reports.

[27]  Francisco M. Gama,et al.  Effect of poling state and morphology of piezoelectric poly(vinylidene fluoride) membranes for skeletal muscle tissue engineering , 2013 .

[28]  Rangam Rajkhowa,et al.  Silk fibroin biomaterials for tissue regenerations. , 2013, Advanced drug delivery reviews.

[29]  Masoud Latifi,et al.  The influence of surface nanoroughness of electrospun PLGA nanofibrous scaffold on nerve cell adhesion and proliferation , 2013, Journal of Materials Science: Materials in Medicine.

[30]  M. Kooti,et al.  Magnetic cobalt ferrite nanoparticles as an efficient catalyst for oxidation of alkenes , 2012 .

[31]  Francisco M. Gama,et al.  Enhanced proliferation of pre-osteoblastic cells by dynamic piezoelectric stimulation , 2012 .

[32]  Jung Min Lee,et al.  Biodegradation behavior of silk fibroin membranes in repairing tympanic membrane perforations. , 2012, Journal of biomedical materials research. Part A.

[33]  J. A. Panadero,et al.  Fibronectin adsorption and cell response on electroactive poly(vinylidene fluoride) films , 2012, Biomedical materials.

[34]  Jiahai Zhang,et al.  N-Terminal domain of Bombyx mori fibroin mediates the assembly of silk in response to pH decrease. , 2012, Journal of molecular biology.

[35]  Faissal Abdel-Hady,et al.  Experimental Validation of Upward Electrospinning Process , 2011 .

[36]  Senentxu Lanceros-Méndez,et al.  Optimizing piezoelectric and magnetoelectric responses on CoFe2O4/P(VDF-TrFE) nanocomposites , 2011 .

[37]  D. Kaplan,et al.  Materials fabrication from Bombyx mori silk fibroin , 2011, Nature Protocols.

[38]  K. Chrissafis,et al.  Can nanoparticles really enhance thermal stability of polymers? Part I: An overview on thermal decomposition of addition polymers , 2011 .

[39]  T. K. Maiti,et al.  Monodisperse mesoporous cobalt ferrite nanoparticles: synthesis and application in targeted delivery of antitumor drugs , 2011 .

[40]  David L Kaplan,et al.  Structural Origins of Silk Piezoelectricity , 2011, Advanced functional materials.

[41]  K. Schenke-Layland,et al.  Stem cell microenvironments--unveiling the secret of how stem cell fate is defined. , 2010, Macromolecular bioscience.

[42]  Gary L. Bowlin,et al.  The Use of Natural Polymers in Tissue Engineering: A Focus on Electrospun Extracellular Matrix Analogues , 2010 .

[43]  Lourdes Díaz-Rodríguez,et al.  Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion , 2010 .

[44]  Jiang Chang,et al.  Electrospun nanofibrous materials for tissue engineering and drug delivery , 2010, Science and technology of advanced materials.

[45]  Bochu Wang,et al.  Biodegradation of Silk Biomaterials , 2009, International journal of molecular sciences.

[46]  Irene Georgakoudi,et al.  Bone regeneration on macroporous aqueous-derived silk 3-D scaffolds. , 2007, Macromolecular bioscience.

[47]  Zhanhu Guo,et al.  Magnetic and electromagnetic evaluation of the magnetic nanoparticle filled polyurethane nanocomposites , 2007 .

[48]  Huapeng Zhang,et al.  Preparation and characterization of novel nanocomposite films formed from silk fibroin and nano-TiO2. , 2007, International journal of biological macromolecules.

[49]  Farshid Guilak,et al.  A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. , 2007, Nature materials.

[50]  G. Vunjak‐Novakovic,et al.  Silk based biomaterials to heal critical sized femur defects. , 2006, Bone.

[51]  A. Mikos,et al.  Electrospinning of polymeric nanofibers for tissue engineering applications: a review. , 2006, Tissue engineering.

[52]  B. Hall,et al.  Buried alive: How osteoblasts become osteocytes , 2006, Developmental dynamics : an official publication of the American Association of Anatomists.

[53]  D. Reneker,et al.  Branching in electrospinning of nanofibers , 2005 .

[54]  T. Lim,et al.  An Introduction to Electrospinning and Nanofibers , 2005 .

[55]  Xiaolong Zhu,et al.  Effects of topography and composition of titanium surface oxides on osteoblast responses. , 2004, Biomaterials.

[56]  Won Ho Park,et al.  Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. , 2004, Biomaterials.

[57]  I. Um,et al.  The role of formic acid in solution stability and crystallization of silk protein polymer. , 2003, International journal of biological macromolecules.

[58]  John F. Rabolt,et al.  Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers , 2002 .

[59]  Hiromi Yamada,et al.  Isolation of Three Main Sericin Components from the Cocoon of the Silkworm, Bombyx mori , 2002, Bioscience, biotechnology, and biochemistry.

[60]  Jack F. Douglas,et al.  The Critical Role of Solvent Evaporation on the Roughness of Spin-Cast Polymer Films , 2001 .

[61]  Darrell H. Reneker,et al.  Bending instability in electrospinning of nanofibers , 2001 .

[62]  E. Kobatake,et al.  ELECTRICALLY STIMULATED MODULATION OF CELLULAR FUNCTION IN PROLIFERATION, DIFFERENTIATION, AND GENE EXPRESSION , 1999 .

[63]  Kanchan Maji,et al.  Biomaterials for Bone Tissue Engineering: Recent Advances and Challenges , 2018 .