A note on distinguishing trees with the chromatic symmetric function

For a tree T , consider its smallest subtree T ◦ containing all vertices of degree at least 3. Then the remaining edges of T lie on disjoint paths each with one endpoint on T ◦. We show that the chromatic symmetric function of T determines the size of T ◦, and the multiset of the lengths of these incident paths. In particular, this generalizes a proof of Martin, Morin, and Wagner that the chromatic symmetric function distinguishes spiders.

[1]  Steven D. Noble,et al.  A weighted graph polynomial from chromatic invariants of knots , 1999 .

[2]  Radmila Sazdanovic,et al.  A categorification of the chromatic symmetric function , 2015, J. Comb. Theory A.

[3]  S. Heil,et al.  On an algorithm for comparing the chromatic symmetric functions of trees , 2018, Australas. J Comb..

[4]  Sergei K. Lando,et al.  Vassiliev knot invariants. III: Forest algebra and weighted graphs , 1994 .

[5]  Richard P. Stanley,et al.  A Symmetric Function Generalization of the Chromatic Polynomial of a Graph , 1995 .

[6]  T. Chow,et al.  Unit Interval Orders and the Dot Action on the Cohomology of Regular Semisimple Hessenberg Varieties , 2015, 1511.00773.

[7]  Jake Huryn A few more trees the chromatic symmetric function can distinguish , 2019, Involve, a Journal of Mathematics.

[8]  M. Loebl,et al.  Isomorphism of Weighted Trees and Stanley's Conjecture for Caterpillars , 2014, 1405.4132.

[9]  Richard P. Stanley,et al.  Graph colorings and related symmetric functions: ideas and applications A description of results, interesting applications, & notable open problems , 1998, Discret. Math..

[10]  M. Loebl,et al.  Isomorphism of weighted trees and Stanley's isomorphism conjecture for caterpillars , 2019, Annales de l’Institut Henri Poincaré D.

[11]  José Zamora,et al.  On trees with the same restricted U-polynomial and the Prouhet-Tarry-Escott problem , 2015, Discret. Math..

[12]  Gary Gordon,et al.  Tutte polynomials for trees , 1991, J. Graph Theory.

[13]  Jeremy L. Martin,et al.  On distinguishing trees by their chromatic symmetric functions , 2008, J. Comb. Theory, Ser. A.