Knowledge-Based Control of Self-Adaptive Evolutionary Search
暂无分享,去创建一个
Self-adaptation has been frequently employed in evolutionary computation. Angeline [1995] defines three distinct adaptive levels which are: population, individual, and component level. Cultural Algorithms have been shown to provide a framework in which to model self-adaptation at each of these levels. Here, we examine the role that different forms of knowledge can play in the self-adaptation process at the population level for evolution-based function optimizers. In particular, we compare the relative performance of normative and situational knowledge in guiding the search process. An acceptance function using a fuzzy inference engine is employed to select acceptable individuals for forming the generalized knowledge in the belief space. Evolutionary programming is used to implement the population space. The results suggest that the use of a cultural framework can produce substantial performance improvements in execution time and accuracy for a given set of function minimization problems over population-only evolutionary systems.