Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum

The realization of an efficient optical sensor based on a photonic crystal metasurface supporting bound states in the continuum is reported. Liquids with different refractive indices, ranging from 1.4000 to 1.4480, are infiltrated in a microfluidic chamber bonded to the sensing dielectric metasurface. A bulk liquid sensitivity of 178 nm/RIU is achieved, while a Q-factor of about 2000 gives a sensor figure of merit up to 445 in air at both visible and infrared excitations. Furthermore, the detection of ultralow-molecular-weight (186 Da) molecules is demonstrated with a record resonance shift of 6 nm per less than a 1 nm thick single molecular layer. The system exploits a normal-to-the-surface optical launching scheme, with excellent interrogation stability and demonstrates alignment-free performances, overcoming the limits of standard photonic crystals and plasmonic resonant configurations.

[1]  Igal Brener,et al.  Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances , 2014, Nature Communications.

[2]  Frank H. Stillinger,et al.  Bound states in the continuum , 1975 .

[3]  Y. Fainman,et al.  Resonantly Trapped Bound State in the Continuum Laser , 2015, 1508.05164.

[4]  Ray T. Chen,et al.  Cavity-Waveguide Coupling Engineered High Sensitivity Silicon Photonic Crystal Microcavity Biosensors With High Yield , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[5]  Jan Greve,et al.  Surface plasmon resonance immunosensors: sensitivity considerations , 1988 .

[6]  S. Cabrini,et al.  Observation of resonant states in negative refractive photonic crystals , 2014 .

[7]  Steven G. Johnson,et al.  Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals , 2013, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Yong Zhao,et al.  A review for optical sensors based on photonic crystal cavities , 2015 .

[9]  P. Russell,et al.  Vertical-cavity surface-emitting resonances in photonic crystal films. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[10]  Soon-Hong Kwon,et al.  Optimization of photonic crystal cavity for chemical sensing. , 2008, Optics express.

[11]  T. Krauss,et al.  Chemical sensing in slotted photonic crystal heterostructure cavities , 2009 .

[12]  Lars Hagedorn Frandsen,et al.  Silicon photonic crystal nanostructures for refractive index sensing , 2008 .

[13]  V. Mocella,et al.  Giant field enhancement in photonic resonant lattices , 2015 .

[14]  A. Borisov,et al.  Bound States in the continuum in photonics. , 2008, Physical review letters.

[15]  Ivo Rendina,et al.  Optical Biosensors Based on Photonic Crystals Supporting Bound States in the Continuum , 2018, Materials.

[16]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[17]  J. Neumann,et al.  Über merkwürdige diskrete Eigenwerte , 1993 .

[18]  S J Tendler,et al.  Surface plasmon resonance analysis of dynamic biological interactions with biomaterials. , 2000, Biomaterials.

[19]  Pei Ding,et al.  A novel planar metamaterial design for electromagnetically induced transparency and slow light. , 2013, Optics express.

[20]  M. Kamp,et al.  Photonic crystal cavity based gas sensor , 2008 .

[21]  Annette Grot,et al.  Ultra compact biochemical sensor built with two dimensional photonic crystal microcavity , 2004 .

[22]  Ivo Rendina,et al.  Plasmon-like surface states in negative refractive index photonic crystals , 2013 .

[23]  J. Homola On the sensitivity of surface plasmon resonance sensors with spectral interrogation , 1997 .

[24]  Günter Gauglitz,et al.  Surface plasmon resonance sensors: review , 1999 .

[25]  A. Henglein,et al.  Surface chemistry of colloidal silver: surface plasmon damping by chemisorbed iodide, hydrosulfide (SH-), and phenylthiolate , 1993 .

[26]  D. V. Evans,et al.  Embedded Rayleigh–Bloch surface waves along periodic rectangular arrays , 2005 .

[27]  M. Segev,et al.  Experimental observation of optical bound states in the continuum. , 2011, Physical review letters.

[28]  Scott T. Retterer,et al.  Enhancing the Sensitivity of Label-Free Silicon Photonic Biosensors through Increased Probe Molecule Density , 2014 .

[29]  Stefan L. Schweizer,et al.  Miniature infrared gas sensors using photonic crystals , 2011 .

[30]  I. Al-Naib,et al.  Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials. , 2012, Optics letters.

[31]  Ivo Rendina,et al.  Guided resonance in negative index photonic crystals: a new approach , 2014, Light: Science & Applications.

[32]  Fredrik Höök,et al.  Improving the instrumental resolution of sensors based on localized surface plasmon resonance. , 2006, Analytical chemistry.

[33]  A. Sasso,et al.  Enhancement factor statistics of surface enhanced Raman scattering in multiscale heterostructures of nanoparticles. , 2016, The Journal of chemical physics.

[34]  Eric M. Yeatman,et al.  Resolution and sensitivity in surface plasmon microscopy and sensing , 1996 .

[35]  Yoshinori Tanaka,et al.  Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities , 2009 .

[36]  Efe Ilker,et al.  Extreme sensitivity biosensing platform based on hyperbolic metamaterials. , 2016, Nature materials.

[37]  Yeshaiahu Fainman,et al.  Lasing action from photonic bound states in continuum , 2017, Nature.

[38]  Hongwei Liao,et al.  Biomedical applications of plasmon resonant metal nanoparticles. , 2006, Nanomedicine.

[39]  G. Whitesides,et al.  Soft Lithography. , 1998, Angewandte Chemie.

[40]  E. Bulgakov,et al.  Bound states in the continuum in photonic waveguides inspired by defects , 2008 .

[41]  Yuze Sun,et al.  Sensitive optical biosensors for unlabeled targets: a review. , 2008, Analytica chimica acta.

[42]  Marin Soljacic,et al.  Bound states in the continuum , 2016 .

[43]  G. Wurtz,et al.  Plasmonic nanorod metamaterials for biosensing. , 2009, Nature materials.

[44]  Lauro T Kubota,et al.  Determination of thickness, dielectric constant of thiol films, and kinetics of adsorption using surface plasmon resonance. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[45]  Y. Kivshar,et al.  Surface bound states in the continuum. , 2011, Physical review letters.

[46]  A. Sasso,et al.  Dark spots along slowly scaling chains of plasmonic nanoparticles. , 2016, Optics express.