Extracting 3D structure from disparity

The neural mechanisms of stereoscopic 3D shape perception have only recently been investigated. Here we review the two cortical regions in which these mechanisms have been studied so far in macaques: a small subpart of inferotemporal cortex called TEs, and the caudal intraparietal (CIP) region. Neurons in TEs respond selectively to the orientation and curvature in depth of stereoscopic surfaces and this region provides a detailed 3D shape description of surface boundaries and surface content. This description is evoked only by binocular stimuli in which subjects see depth and it does not vary if depth is specified by different cues. Neurons in CIP are a selective for orientation in depth of surfaces and elongated objects, and their responses are also unaffected by changes in depth cues. Thus, stereoscopic 3D shape is processed in both the dorsal, occipito-parietal and the ventral, occipito-temporal streams.

[1]  E. W. Bough Stereoscopic Vision in the Macaque Monkey: a Behavioural Demonstration , 1970, Nature.

[2]  D. V. van Essen,et al.  Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto‐occipital cortex , 2000, The Journal of comparative neurology.

[3]  D. V. van Essen,et al.  The Processing of Visual Shape in the Cerebral Cortex of Human and Nonhuman Primates: A Functional Magnetic Resonance Imaging Study , 2004, The Journal of Neuroscience.

[4]  C. Blakemore,et al.  The neural mechanism of binocular depth discrimination , 1967, The Journal of physiology.

[5]  G. Orban,et al.  At Least at the Level of Inferior Temporal Cortex, the Stereo Correspondence Problem Is Solved , 2003, Neuron.

[6]  Jerry D. Nguyenkim,et al.  Disparity-Based Coding of Three-Dimensional Surface Orientation by Macaque Middle Temporal Neurons , 2003, The Journal of Neuroscience.

[7]  H. Sakata,et al.  The TINS Lecture The parietal association cortex in depth perception and visual control of hand action , 1997, Trends in Neurosciences.

[8]  H. Sakata,et al.  Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. , 2000, Journal of neurophysiology.

[9]  R. Andersen,et al.  Intentional maps in posterior parietal cortex. , 2002, Annual review of neuroscience.

[10]  D C Van Essen,et al.  Information processing in the primate visual system: an integrated systems perspective. , 1992, Science.

[11]  Nikos K Logothetis,et al.  Interpreting the BOLD signal. , 2004, Annual review of physiology.

[12]  G. Orban,et al.  Three-Dimensional Shape Coding in Inferior Temporal Cortex , 2000, Neuron.

[13]  A. Parker,et al.  Receptive Field Size in V1 Neurons Limits Acuity for Perceiving Disparity Modulation , 2004, The Journal of Neuroscience.

[14]  Minami Ito,et al.  Size and position invariance of neuronal responses in monkey inferotemporal cortex. , 1995, Journal of neurophysiology.

[15]  Casper J. Erkelens,et al.  Voluntary binocular gaze-shifts in the plane of regard: Dynamics of version and vergence , 1995, Vision Research.

[16]  G. Rizzolatti,et al.  The Cortical Motor System , 2001, Neuron.

[17]  G. Orban,et al.  Responses of macaque STS neurons to optic flow components: a comparison of areas MT and MST. , 1994, Journal of neurophysiology.

[18]  B. Cumming,et al.  Testing quantitative models of binocular disparity selectivity in primary visual cortex. , 2003, Journal of neurophysiology.

[19]  Makoto Kato,et al.  Processing of shape defined by disparity in monkey inferior temporal cortex. , 2001 .

[20]  Peter Neri,et al.  A stereoscopic look at visual cortex. , 2005, Journal of neurophysiology.

[21]  Hideo Sakata,et al.  Neural mechanisms of three-dimensional vision , 2005, Neuroscience Research.

[22]  B G Cumming,et al.  Disparity Detection in Anticorrelated Stereograms , 1998, Perception.

[23]  G. Poggio,et al.  Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. , 1977, Journal of neurophysiology.

[24]  H. Sakata,et al.  Parietal neurons represent surface orientation from the gradient of binocular disparity. , 2000, Journal of neurophysiology.

[25]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[26]  G C DeAngelis,et al.  The physiology of stereopsis. , 2001, Annual review of neuroscience.

[27]  Rufin Vogels,et al.  Convergence of Depth from Texture and Depth from Disparity in Macaque Inferior Temporal Cortex , 2004, The Journal of Neuroscience.

[28]  Jay Hegdé,et al.  Stimulus dependence of disparity coding in primate visual area V4. , 2005, Journal of neurophysiology.

[29]  H. Sakata,et al.  Toward an understanding of the neural processing for 3D shape perception , 2005, Neuropsychologia.

[30]  Ian P. Howard,et al.  Binocular Vision and Stereopsis , 1996 .

[31]  Guy A. Orban,et al.  Similarities and differences in motion processing between the human and macaque brain: evidence from fMRI , 2003, Neuropsychologia.

[32]  T. Poggio,et al.  The analysis of stereopsis. , 1984, Annual review of neuroscience.

[33]  H. Bülthoff,et al.  3D shape perception from combined depth cues in human visual cortex , 2005, Nature Neuroscience.

[34]  C. Gross,et al.  Effects of foveal prestriate and inferotemporal lesions on visual discrimination by rhesus monkeys , 2004, Experimental Brain Research.

[35]  G. Orban,et al.  Extracting 3D from Motion: Differences in Human and Monkey Intraparietal Cortex , 2002, Science.

[36]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[37]  Tomoka Naganuma,et al.  Neural Correlates for Perception of 3D Surface Orientation from Texture Gradient , 2002, Science.

[38]  Jay Hegdé,et al.  Role of primate visual area V4 in the processing of 3-D shape characteristics defined by disparity. , 2005, Journal of neurophysiology.

[39]  R Vogels,et al.  Coding of stimulus invariances by inferior temporal neurons. , 1996, Progress in brain research.

[40]  N. Logothetis,et al.  Functional imaging of the monkey brain , 1999, Nature Neuroscience.

[41]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[42]  H. Sakata,et al.  From Three-Dimensional Space Vision to Prehensile Hand Movements: The Lateral Intraparietal Area Links the Area V3A and the Anterior Intraparietal Area in Macaques , 2001, The Journal of Neuroscience.

[43]  B. Julesz Foundations of Cyclopean Perception , 1971 .

[44]  C. Connor,et al.  Three-dimensional orientation tuning in macaque area V4 , 2002, Nature Neuroscience.

[45]  D Marr,et al.  A computational theory of human stereo vision. , 1979, Proceedings of the Royal Society of London. Series B, Biological sciences.

[46]  G. Orban,et al.  Visual Motion Processing Investigated Using Contrast Agent-Enhanced fMRI in Awake Behaving Monkeys , 2001, Neuron.

[47]  A. Parker,et al.  The Precision of Single Neuron Responses in Cortical Area V1 during Stereoscopic Depth Judgments , 2000, The Journal of Neuroscience.

[48]  James T. Todd,et al.  The effects of field of view on the perception of 3D slant from texture , 2005, Vision Research.

[49]  Keiji Tanaka,et al.  Connections between Anterior Inferotemporal Cortex and Superior Temporal Sulcus Regions in the Macaque Monkey , 2000, The Journal of Neuroscience.

[50]  R Vogels,et al.  Macaque inferior temporal neurons are selective for disparity-defined three-dimensional shapes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[51]  B. Rogers,et al.  Disparity curvature and the perception of three-dimensional surfaces , 1989, Nature.

[52]  Ichiro Fujita,et al.  Disparity-selective neurons in area V4 of macaque monkeys. , 2002 .

[53]  G. Orban,et al.  Cue-invariant shape selectivity of macaque inferior temporal neurons. , 1993, Science.

[54]  S. Edelman,et al.  Orientation dependence in the recognition of familiar and novel views of three-dimensional objects , 1992, Vision Research.

[55]  A. Parker,et al.  A specialization for relative disparity in V2 , 2002, Nature Neuroscience.

[56]  R J Zatorre,et al.  Stereopsis after unilateral anterior temporal lobectomy. Dissociation between local and global measures. , 1991, Brain : a journal of neurology.

[57]  G. Orban,et al.  Selectivity for 3D shape that reveals distinct areas within macaque inferior temporal cortex. , 2000, Science.

[58]  Ichiro Fujita,et al.  Neural Correlates of Fine Depth Discrimination in Monkey Inferior Temporal Cortex , 2005, The Journal of Neuroscience.

[59]  R. Desimone,et al.  Shape recognition and inferior temporal neurons. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Stanislas Dehaene,et al.  From monkey brain to human brain : a Fyssen Foundation symposium , 2005 .

[61]  H. Sakata,et al.  Selectivity of the parietal visual neurones in 3D orientation of surface of stereoscopic stimuli. , 1996, Neuroreport.

[62]  Jan J. Koenderink,et al.  Solid shape , 1990 .

[63]  G. Westheimer,et al.  Cooperative neural processes involved in stereoscopic acuity , 1979, Experimental Brain Research.

[64]  K Tsutsui,et al.  Neural coding of 3D features of objects for hand action in the parietal cortex of the monkey. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[65]  I. Fujita,et al.  Disparity selectivity of neurons in monkey inferior temporal cortex. , 2000, Journal of neurophysiology.

[66]  H. Sakata,et al.  Integration of perspective and disparity cues in surface-orientation-selective neurons of area CIP. , 2001, Journal of neurophysiology.

[67]  D. B. Bender,et al.  Visual properties of neurons in inferotemporal cortex of the Macaque. , 1972, Journal of neurophysiology.

[68]  R. Vogels Categorization of complex visual images by rhesus monkeys. Part 2: single‐cell study , 1999, The European journal of neuroscience.

[69]  P. O. Bishop,et al.  Binocular interaction on single units in cat striate cortex: Simultaneous stimulation by single moving slit with receptive fields in correspondence , 2004, Experimental Brain Research.

[70]  G. Orban,et al.  Macaque Inferior Temporal Neurons Are Selective for Three-Dimensional Boundaries and Surfaces , 2001, The Journal of Neuroscience.

[71]  Takahiro Doi,et al.  Disparity-tuning characteristics of neuronal responses to dynamic random-dot stereograms in macaque visual area V4. , 2005, Journal of neurophysiology.

[72]  B. G. Cumming,et al.  Responses of primary visual cortical neurons to binocular disparity without depth perception , 1997, Nature.

[73]  I. Fujita,et al.  Rejection of False Matches for Binocular Correspondence in Macaque Visual Cortical Area V4 , 2004, The Journal of Neuroscience.

[74]  C E Connor,et al.  Disparity tuning in macaque area V4 , 2001, Neuroreport.

[75]  A. Parker,et al.  Comparing perceptual signals of single V5/MT neurons in two binocular depth tasks. , 2004, Journal of neurophysiology.

[76]  Simon J Watt,et al.  The visual control of reaching and grasping: binocular disparity and motion parallax. , 2003, Journal of experimental psychology. Human perception and performance.

[77]  P. O. Bishop,et al.  Responses to moving slits by single units in cat striate cortex , 2004, Experimental Brain Research.

[78]  David L. Sheinberg,et al.  Visual object recognition. , 1996, Annual review of neuroscience.