Partitioning methods outperform hierarchical methods for clustering consumers in preference mapping

In preference mapping, mean liking scores of the products often appear to be the resultant of diverging opinions that need to be summarized with a small number of homogeneous consumer clusters. For doing so, the common practice of most consumer research agencies is to use hierarchical clustering methods. The objective of this work is to compare this common practice with partitioning methods (e.g. k-means clustering) that we generally apply. These comparisons are made on actual Nestle studies and on simulated datasets. For actual studies, methods are compared according to four indexes measuring the compactness and the separation of the clustering. For simulated data, the methods are compared on their ability to recover the a priori defined clusters. Results show that common partitioning methods like k-means outperform hierarchical methods for clustering consumers in preference mapping.

[1]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[2]  Gastón Ares,et al.  PREFERENCE MAPPING OF TEXTURE OF DULCE DE LECHE , 2006 .

[3]  C. Mallows,et al.  A Method for Comparing Two Hierarchical Clusterings , 1983 .

[4]  S. Arditti,et al.  Preference mapping: A case study , 1997 .

[5]  I. Jolliffe Principal Component Analysis , 2002 .

[6]  Ella Pagliarini,et al.  SENSORY PROFILE DESCRIPTION OF MOZZARELLA CHEESE AND ITS RELATIONSHIP WITH CONSUMER PREFERENCE , 1997 .

[7]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[8]  Mia Hubert,et al.  Clustering in an object-oriented environment , 1997 .

[9]  Evelyne Vigneau,et al.  Segmentation of a panel of consumers using clustering of variables around latent directions of preference , 2001 .

[10]  Anbupalam Thalamuthu,et al.  Gene expression Evaluation and comparison of gene clustering methods in microarray analysis , 2006 .

[11]  Guillermo Hough,et al.  Preference mapping of cracker type biscuits , 2002 .

[12]  Jean-Xavier Guinard,et al.  Internal preference mapping of hedonic ratings for Ranch salad dressings varying in fat and garlic flavor , 1999 .

[13]  P. Courcoux,et al.  Preference mapping using a latent class vector model , 2001 .

[14]  Sueli Aparecida Mingoti,et al.  Comparing SOM neural network with Fuzzy c , 2006, Eur. J. Oper. Res..

[15]  Maurice K. Wong,et al.  Algorithm AS136: A k-means clustering algorithm. , 1979 .

[16]  Conor M. Delahunty,et al.  The sensory profile and consumer preference for ten speciality cheeses , 2000 .

[17]  Dave Plaehn,et al.  An L-PLS preference cluster analysis on French consumer hedonics to fresh tomatoes , 2006 .

[18]  Michalis Vazirgiannis,et al.  c ○ 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. On Clustering Validation Techniques , 2022 .

[19]  W. Härdle,et al.  Applied Multivariate Statistical Analysis , 2003 .

[20]  Einar Risvik,et al.  Evaluation of sensory profiling and projective mapping data , 1997 .

[21]  Sara R. Jaeger,et al.  Consumer preferences for fresh and aged apples: a cross-cultural comparison , 1998 .

[22]  J. H. Thorngate,et al.  Oral sensations associated with the flavan-3-ols (+)-catechin and (-)-epicatechin 1 Journal Series P , 1999 .

[23]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[24]  Descriptive analysis, consumer clusters and preference mapping of commercial mayonnaise in Argentina , 2002 .

[25]  G. Hough,et al.  Note: Relationships of Consumer Acceptability and Sensory Attributes of Yerba Mate (Ilex Paraguariensis St. Hilarie) using Preference Mapping , 2003 .

[26]  Marie Wong,et al.  Mapping consumer perceptions of creaminess and liking for liquid dairy products , 2000 .

[27]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[28]  M. Drake,et al.  Preference Mapping of Commercial Chocolate Milks , 2006 .

[29]  Tormod Næs,et al.  Consumer preference mapping of dry fermented lamb sausages , 1997 .

[30]  J. Piggott Statistical procedures in food research , 1986 .

[31]  Evelyne Vigneau,et al.  Clustering of variables, application in consumer and sensory studies , 1997 .

[32]  Frank Westad,et al.  Strategies for consumer segmentation with applications on preference data , 2004 .