Refinement of Tools for Targeted Gene Expression in Drosophila

A wide variety of biological experiments rely on the ability to express an exogenous gene in a transgenic animal at a defined level and in a spatially and temporally controlled pattern. We describe major improvements of the methods available for achieving this objective in Drosophila melanogaster. We have systematically varied core promoters, UTRs, operator sequences, and transcriptional activating domains used to direct gene expression with the GAL4, LexA, and Split GAL4 transcription factors and the GAL80 transcriptional repressor. The use of site-specific integration allowed us to make quantitative comparisons between different constructs inserted at the same genomic location. We also characterized a set of PhiC31 integration sites for their ability to support transgene expression of both drivers and responders in the nervous system. The increased strength and reliability of these optimized reagents overcome many of the previous limitations of these methods and will facilitate genetic manipulations of greater complexity and sophistication.

[1]  Liang Liang,et al.  The Q System: A Repressible Binary System for Transgene Expression, Lineage Tracing, and Mosaic Analysis , 2010, Cell.

[2]  A. Spradling,et al.  Epigenetic stability increases extensively during Drosophila follicle stem cell differentiation , 2010, Proceedings of the National Academy of Sciences.

[3]  Matthias Landgraf,et al.  Midline Signalling Systems Direct the Formation of a Neural Map by Dendritic Targeting in the Drosophila Motor System , 2009, PLoS biology.

[4]  Norbert Perrimon,et al.  A Drosophila Resource of Transgenic RNAi Lines for Neurogenetics , 2009, Genetics.

[5]  Kristin Scott,et al.  Motor Control in a Drosophila Taste Circuit , 2009, Neuron.

[6]  M. Rosbash,et al.  Light-arousal and circadian photoreception circuits intersect at the large PDF cells of the Drosophila brain , 2008, Proceedings of the National Academy of Sciences.

[7]  A. Emelyanov,et al.  Mifepristone-inducible LexPR system to drive and control gene expression in transgenic zebrafish. , 2008, Developmental biology.

[8]  G. Rubin,et al.  Tools for neuroanatomy and neurogenetics in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[9]  S. Sternson,et al.  A FLEX Switch Targets Channelrhodopsin-2 to Multiple Cell Types for Imaging and Long-Range Circuit Mapping , 2008, The Journal of Neuroscience.

[10]  M. Bate,et al.  Gateway cloning vectors for the LexA-based binary expression system in Drosophila , 2008, Fly.

[11]  N. Perrimon,et al.  Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes , 2008, Nature Genetics.

[12]  Cori Bargmann,et al.  GFP Reconstitution Across Synaptic Partners (GRASP) Defines Cell Contacts and Synapses in Living Nervous Systems , 2008, Neuron.

[13]  D. Bilder,et al.  Dynein Regulates Epithelial Polarity and the Apical Localization of stardust A mRNA , 2008, PLoS genetics.

[14]  S. Busby,et al.  The bacterial LexA transcriptional repressor , 2008, Cellular and Molecular Life Sciences.

[15]  N. Perrimon,et al.  Vector and parameters for targeted transgenic RNA interference in Drosophila melanogaster , 2008, Nature Methods.

[16]  K. Johansen,et al.  Chromatin structure and the regulation of gene expression: the lessons of PEV in Drosophila. , 2008, Advances in genetics.

[17]  R. Maeda,et al.  An optimized transgenesis system for Drosophila using germ-line-specific φC31 integrases , 2007, Proceedings of the National Academy of Sciences.

[18]  L. Wallrath,et al.  Gene regulation by chromatin structure: paradigms established in Drosophila melanogaster. , 2007, Annual review of entomology.

[19]  Hugo J. Bellen,et al.  P[acman]: A BAC Transgenic Platform for Targeted Insertion of Large DNA Fragments in D. melanogaster , 2006, Science.

[20]  Haojiang Luan,et al.  Refined Spatial Manipulation of Neuronal Function by Combinatorial Restriction of Transgene Expression , 2006, Neuron.

[21]  Alan Villalobos,et al.  Gene Designer: a synthetic biology tool for constructing artificial DNA segments , 2006, BMC Bioinformatics.

[22]  Volker Hartenstein,et al.  Neural Lineages of the Drosophila Brain: A Three-Dimensional Digital Atlas of the Pattern of Lineage Location and Projection at the Late Larval Stage , 2006, The Journal of Neuroscience.

[23]  A. Traven,et al.  Yeast Gal4: a transcriptional paradigm revisited , 2006, EMBO reports.

[24]  Sen-Lin Lai,et al.  Genetic mosaic with dual binary transcriptional systems in Drosophila , 2006, Nature Neuroscience.

[25]  D. Cleppien,et al.  A new strategy for efficient in vivo screening of mutagenized Drosophila embryos , 2006, Development Genes and Evolution.

[26]  Kevin Struhl,et al.  Genomic analysis of LexA binding reveals the permissive nature of the Escherichia coli genome and identifies unconventional target sites. , 2005, Genes & development.

[27]  Darren W. Williams,et al.  Developmental architecture of adult-specific lineages in the ventral CNS of Drosophila , 2004, Development.

[28]  José Agosto,et al.  Coupled oscillators control morning and evening locomotor behaviour of Drosophila , 2004, Nature.

[29]  M. Suster,et al.  Refining GAL4‐driven transgene expression in Drosophila with a GAL80 enhancer‐trap , 2004, Genesis.

[30]  S. Govindarajan,et al.  Codon bias and heterologous protein expression. , 2004, Trends in biotechnology.

[31]  Michele P Calos,et al.  Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. , 2004, Genetics.

[32]  Stewart T. Cole,et al.  Characterisation of the promoter for the LexA regulated sulA gene of Escherichia coli , 2004, Molecular and General Genetics MGG.

[33]  R. Carthew,et al.  Making a better RNAi vector for Drosophila: use of intron spacers. , 2003, Methods.

[34]  J. Kramer,et al.  GAL4 causes developmental defects and apoptosis when expressed in the developing eye of Drosophila melanogaster. , 2003, Genetics and molecular research : GMR.

[35]  N. Perrimon,et al.  Analysis of twenty‐four Gal4 lines in Drosophila melanogaster , 2002, Genesis.

[36]  J. B. Duffy,et al.  GAL4 system in drosophila: A fly geneticist's swiss army knife , 2002, Genesis.

[37]  C. Huynh,et al.  Intron‐dependent stimulation of marker gene expression in cultured insect cells , 2002, Insect molecular biology.

[38]  K. Basler,et al.  A screen for genes expressed in Drosophila imaginal discs. , 2002, The International journal of developmental biology.

[39]  Ronald L. Davis,et al.  P{Switch}, a system for spatial and temporal control of gene expression in Drosophila melanogaster , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Benjamin H. White,et al.  A conditional tissue-specific transgene expression system using inducible GAL4 , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Steven Henikoff,et al.  Modulation of a Transcription Factor Counteracts Heterochromatic Gene Silencing in Drosophila , 2001, Cell.

[42]  K. Melcher,et al.  The strength of acidic activation domains correlates with their affinity for both transcriptional and non-transcriptional proteins. , 2000, Journal of molecular biology.

[43]  M. Bienz,et al.  LexA chimeras reveal the function of Drosophila Fos as a context-dependent transcriptional activator. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[45]  E. Wilder,et al.  Ectopic expression in Drosophila. , 2000, Methods in molecular biology.

[46]  M. Resh Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. , 1999, Biochimica et biophysica acta.

[47]  T. Hope,et al.  Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element Enhances Expression of Transgenes Delivered by Retroviral Vectors , 1999, Journal of Virology.

[48]  Liqun Luo,et al.  Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis , 1999, Neuron.

[49]  P. Davies,et al.  Introns boost transgene expression in Drosophila melanogaster , 1997, Molecular and General Genetics MGG.

[50]  R. Brent,et al.  Correlation of two-hybrid affinity data with in vitro measurements , 1995, Molecular and cellular biology.

[51]  Z. Parveen,et al.  Isolation of silencer-containing sequences causing a tissue-specific position effect on alcohol dehydrogenase expression in Drosophila melanogaster. , 1994, Developmental genetics.

[52]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[53]  P. Baeuerle,et al.  The p65 subunit is responsible for the strong transcription activating potential of NF‐kappa B. , 1991, The EMBO journal.

[54]  R. Jaenisch,et al.  A generic intron increases gene expression in transgenic mice , 1991, Molecular and cellular biology.

[55]  M Schnarr,et al.  DNA binding properties of the LexA repressor. , 1991, Biochimie.

[56]  K. Titani,et al.  Purification and characterization of the yeast negative regulatory protein GAL80. , 1991, The Journal of biological chemistry.

[57]  M. Case,et al.  The Wilhelmine E. Key 1989 invitational lecture. Organization and regulation of the qa (quinic acid) genes in Neurospora crassa and other fungi. , 1991, The Journal of heredity.

[58]  W. Gehring,et al.  Dissecting the complexity of the nervous system by enhancer detection , 1990, BioEssays : news and reviews in molecular, cellular and developmental biology.

[59]  S. Johnston,et al.  GAL4 mutations that separate the transcriptional activation and GAL80-interactive functions of the yeast GAL4 protein. , 1990, Genetics.

[60]  C. Gorman,et al.  Intervening sequences increase efficiency of RNA 3' processing and accumulation of cytoplasmic RNA. , 1990, Nucleic acids research.

[61]  C. Wilson,et al.  Position effects on eukaryotic gene expression. , 1990, Annual review of cell biology.

[62]  S. Lindquist,et al.  Regulation of HSP70 synthesis by messenger RNA degradation. , 1989, Cell regulation.

[63]  S. Fields,et al.  A novel genetic system to detect protein–protein interactions , 1989, Nature.

[64]  S. Johnston,et al.  Interaction between transcriptional activator protein LAC9 and negative regulatory protein GAL80 , 1989, Molecular and cellular biology.

[65]  V. Corces,et al.  The Drosophila melanogaster suppressor of Hairy-wing protein binds to specific sequences of the gypsy retrotransposon. , 1988, Genes & development.

[66]  M. Ptashne How eukaryotic transcriptional activators work , 1988, Nature.

[67]  Jun Ma,et al.  GAL4-VP16 is an unusually potent transcriptional activator , 1988, Nature.

[68]  Tom Maniatis,et al.  GAL4 activates transcription in Drosophila , 1988, Nature.

[69]  P. Chambon,et al.  The yeast UASG is a transcriptional enhancer in human hela cells in the presence of the GAL4 trans-activator , 1988, Cell.

[70]  W. Gehring,et al.  Detection in situ of genomic regulatory elements in Drosophila. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[71]  S. Johnston,et al.  Interaction of positive and negative regulatory proteins in the galactose regulon of yeast , 1987, Cell.

[72]  M. Ptashne,et al.  The carboxy-terminal 30 amino acids of GAL4 are recognized by GAL80 , 1987, Cell.

[73]  Jun Ma,et al.  Deletion analysis of GAL4 defines two transcriptional activating segments , 1987, Cell.

[74]  S. Parkhurst,et al.  The Drosophila melanogaster gypsy transposable element encodes putative gene products homologous to retroviral proteins. , 1986, Molecular and cellular biology.

[75]  M. Ptashne,et al.  Separation of DNA binding from the transcription-activating function of a eukaryotic regulatory protein. , 1986, Science.

[76]  R. Brent,et al.  A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor , 1985, Cell.

[77]  Walter J. Gehring,et al.  Control elements of the Drosophila segmentation gene fushi tarazu , 1985, Cell.

[78]  S. Elledge,et al.  umuDC and mucAB operons whose products are required for UV light- and chemical-induced mutagenesis: UmuD, MucA, and LexA proteins share homology. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[79]  T. Horii,et al.  Structural analysis of the umu operon required for inducible mutagenesis in Escherichia coli. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[80]  Y. Nogi,et al.  Nucleotide sequence of the yeast regulatory gene GAL80. , 1984, Nucleic acids research.

[81]  R. Brent,et al.  A bacterial repressor protein or a yeast transcriptional terminator can block upstream activation of a yeast gene , 1984, Nature.

[82]  G. Walker Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. , 1984, Microbiological reviews.

[83]  R. Brent,et al.  LexA protein is a repressor of the colicin E1 gene. , 1983, The Journal of biological chemistry.

[84]  G. Rubin,et al.  The effect of chromosomal position on the expression of the drosophila xanthine dehydrogenase gene , 1983, Cell.

[85]  S. Johnston,et al.  Isolation of the yeast regulatory gene GAL4 and analysis of its dosage effects on the galactose/melibiose regulon. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[86]  D. Mount,et al.  The SOS regulatory system of Escherichia coli , 1982, Cell.

[87]  J W Little,et al.  Purified lexA protein is a repressor of the recA and lexA genes. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[88]  M Ptashne,et al.  Mechanism of action of the lexA gene product. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[89]  E. Lewis The phenomenon of position effect. , 1950, Advances in genetics.