On the formation of GW190521-like binary black hole merger systems

GW190521 is the most massive merging binary black hole (BBH) system detected so far. At least one of the component BHs was measured to lie within the pair-instability supernova (PISN) mass gap (∼50–135 M⊙), making its formation a mystery. However, the transient observed signal allows alternative posterior distributions. There was suggestion that GW190521 could be an intermediate-mass ratio inspiral, with the component masses m1 ∼ 170 M⊙ and m2 ∼ 16 M⊙, happening to straddle the PISN mass gap. Under this framework, we perform binary population synthesis to explore the formation of GW190521-like systems via isolated binary evolution. We numerically calculate the binding energy parameter for massive stars at different metallicities, and employ them in our calculation for common envelope evolution. Our results prefer that the progenitor binaries formed in metal-poor environment with $\rm Z\le 0.0016$. The predicted merger rate density within redshift z = 1.1 is ${\sim} 4\times 10^{-5}{\text {--}}5\times 10^{-2} \, \rm Gpc^{-3}yr^{-1}$. We expect that such events are potentially observable by upcoming both space and ground-based gravitational wave detectors.

[1]  H. Stevance,et al.  New constraints on the Bray conservation-of-momentum natal kick model from multiple distinct observations , 2022, Monthly Notices of the Royal Astronomical Society.

[2]  Long Wang,et al.  Gravitational wave of intermediate-mass black holes in Population III star clusters , 2022, Monthly Notices of the Royal Astronomical Society.

[3]  V. Kalogera,et al.  Constraining Black Hole Natal Kicks with Astrometric Microlensing , 2022, The Astrophysical Journal.

[4]  K. Olsen,et al.  Kinematics of luminous blue variables in the large magellanic cloud , 2022, Monthly notices of the Royal Astronomical Society.

[5]  I. Bartos,et al.  Ancestral Black Holes of Binary Merger GW190521 , 2022, The Astrophysical Journal Letters.

[6]  A. Hamers An Improved Numerical Fit to the Peak Harmonic Gravitational Wave Frequency Emitted by an Eccentric Binary , 2021, 2111.08033.

[7]  K. Omukai,et al.  Merger Rate Density of Binary Black Holes through Isolated Population I, II, III and Extremely Metal-poor Binary Star Evolution , 2021, The Astrophysical Journal.

[8]  T. Naab,et al.  Black hole mergers in compact star clusters and massive black hole formation beyond the mass-gap , 2021, 2108.11457.

[9]  S. Bernuzzi,et al.  GW190521 as a dynamical capture of two nonspinning black holes , 2021, Nature Astronomy.

[10]  J. Ostriker,et al.  Breaching the Limit: Formation of GW190521-like and IMBH Mergers in Young Massive Clusters , 2021, The Astrophysical Journal.

[11]  D. Keitel,et al.  A Detailed Analysis of GW190521 with Phenomenological Waveform Models , 2021, The Astrophysical Journal.

[12]  M. Fishbach,et al.  Do LIGO/Virgo Black Hole Mergers Produce AGN Flares? The Case of GW190521 and Prospects for Reaching a Confident Association , 2021, 2103.16069.

[13]  I. Bartos,et al.  Mass-gap Mergers in Active Galactic Nuclei , 2020, The Astrophysical Journal.

[14]  A. Nitz,et al.  GW190521 May Be an Intermediate-mass Ratio Inspiral , 2020, The Astrophysical Journal.

[15]  G. Sabhahit,et al.  Maximum black hole mass across cosmic time , 2020, 2010.11730.

[16]  H. Umeda,et al.  Population III binary black holes: effects of convective overshooting on formation of GW190521 , 2020, 2010.07616.

[17]  A. Melatos,et al.  Repeated Mergers of Black Hole Binaries: Implications for GW190521 , 2020, The Astrophysical Journal.

[18]  K. Belczynski The Most Ordinary Formation of the Most Unusual Double Black Hole Merger , 2020, The Astrophysical Journal.

[19]  K. Ackley,et al.  Current observations are insufficient to confidently associate the binary black hole merger GW190521 with AGN J124942.3 + 344929 , 2020, Classical and Quantum Gravity.

[20]  H. Nakano,et al.  Formation of binary black holes similar to GW190521 with a total mass of ∼150 M⊙ from Population III binary star evolution , 2020, 2009.06922.

[21]  G. Meynet,et al.  Is GW190521 the merger of black holes from the first stellar generations? , 2020, Monthly Notices of the Royal Astronomical Society: Letters.

[22]  M. Szczepańczyk,et al.  Eccentricity estimate for black hole mergers with numerical relativity simulations , 2020, Nature Astronomy.

[23]  M. Fishbach,et al.  Minding the Gap: GW190521 as a Straddling Binary , 2020, The Astrophysical Journal.

[24]  P. Lasky,et al.  GW190521: Orbital Eccentricity and Signatures of Dynamical Formation in a Binary Black Hole Merger Signal , 2020, The Astrophysical Journal.

[25]  A. Loeb,et al.  On the Origin of GW190521-like Events from Repeated Black Hole Mergers in Star Clusters , 2020, The Astrophysical Journal.

[26]  H. Susa,et al.  Merger Rate Density of Population III Binary Black Holes Below, Above, and in the Pair-instability Mass Gap , 2020, The Astrophysical Journal.

[27]  I. Mandel,et al.  Simple recipes for compact remnant masses and natal kicks , 2020, 2006.08360.

[28]  Z. Haiman,et al.  Formation and Evolution of Compact-object Binaries in AGN Disks , 2019, The Astrophysical Journal.

[29]  S. D. Mink,et al.  Mind the Gap: The Location of the Lower Edge of the Pair-instability Supernova Black Hole Mass Gap , 2019, The Astrophysical Journal.

[30]  M. Mapelli,et al.  Revising Natal Kick Prescriptions in Population Synthesis Simulations , 2019, The Astrophysical Journal.

[31]  Y. Bouffanais,et al.  Impact of the Rotation and Compactness of Progenitors on the Mass of Black Holes , 2019, The Astrophysical Journal.

[32]  G. Nelemans,et al.  Potential kick velocity distribution of black hole X-ray binaries and implications for natal kicks , 2019, Monthly Notices of the Royal Astronomical Society.

[33]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[34]  H. Umeda,et al.  Fitting formulae for evolution tracks of massive stars under extreme metal-poor environments for population synthesis calculations and star cluster simulations , 2019, 1906.06641.

[35]  I. Mandel,et al.  The Impact of Pair-instability Mass Loss on the Binary Black Hole Mass Distribution , 2019, The Astrophysical Journal.

[36]  F. Timmes,et al.  Modules for Experiments in Stellar Astrophysics (MESA): Pulsating Variable Stars, Rotation, Convective Boundaries, and Energy Conservation , 2019, The Astrophysical Journal Supplement Series.

[37]  C. Fryer,et al.  BSE versus StarTrack: Implementations of new wind, remnant-formation, and natal-kick schemes in NBODY7 and their astrophysical consequences , 2019, Astronomy & Astrophysics.

[38]  K. Nomoto,et al.  Pulsational Pair-instability Supernovae. I. Pre-collapse Evolution and Pulsational Mass Ejection , 2019, The Astrophysical Journal.

[39]  V. Kalogera,et al.  Pulsational Pair-instability Supernovae in Very Close Binaries , 2018, The Astrophysical Journal.

[40]  M. Mapelli,et al.  The progenitors of compact-object binaries: impact of metallicity, common envelope and natal kicks , 2018, Monthly Notices of the Royal Astronomical Society.

[41]  S. D. Mink,et al.  Massive runaway and walkaway stars , 2018, Astronomy & Astrophysics.

[42]  J. Eldridge,et al.  Neutron star kicks – II. Revision and further testing of the conservation of momentum ‘kick’ model , 2018, Monthly Notices of the Royal Astronomical Society.

[43]  N. Cornish,et al.  The construction and use of LISA sensitivity curves , 2018, Classical and Quantum Gravity.

[44]  H. Janka,et al.  Hydrodynamical Neutron-star Kicks in Electron-capture Supernovae and Implications for the CRAB Supernova , 2018, The Astrophysical Journal.

[45]  M. Mapelli,et al.  Merging black hole binaries: the effects of progenitor's metallicity, mass-loss rate and Eddington factor , 2017, 1711.03556.

[46]  F. Timmes,et al.  Modules for Experiments in Stellar Astrophysics ( ): Convective Boundaries, Element Diffusion, and Massive Star Explosions , 2017, 1710.08424.

[47]  P. B. Covas,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.

[48]  E. Cator,et al.  The observed velocity distribution of young pulsars , 2017, 1708.08281.

[49]  Zoheyr Doctor,et al.  Evolutionary roads leading to low effective spins, high black hole masses, and O1/O2 rates for LIGO/Virgo binary black holes , 2017, Astronomy & Astrophysics.

[50]  A. Murguia-Berthier,et al.  Common Envelope Wind Tunnel: Coefficients of Drag and Accretion in a Simplified Context for Studying Flows around Objects Embedded within Stellar Envelopes , 2017, 1704.02372.

[51]  G. Nelemans,et al.  The Galactic distribution of X-ray binaries and its implications for compact object formation and natal kicks , 2017, 1701.01347.

[52]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[53]  S. Woosley Pulsational Pair-instability Supernovae , 2016, 1608.08939.

[54]  Y. Wang,et al.  Exploring the sensitivity of next generation gravitational wave detectors , 2016, 1607.08697.

[55]  Chris L. Fryer,et al.  The effect of pair-instability mass loss on black-hole mergers , 2016, 1607.03116.

[56]  Tomasz Bulik,et al.  The first gravitational-wave source from the isolated evolution of two stars in the 40–100 solar mass range , 2016, Nature.

[57]  G. González The LIGO Scientific Collaboration , 2016 .

[58]  I. Mandel Estimates of black hole natal kick velocities from observations of low-mass X-ray binaries , 2015, 1510.03871.

[59]  G. Nelemans,et al.  Constraining the formation of black holes in short-period black hole low-mass X-ray binaries , 2015, 1507.08105.

[60]  Dean M. Townsley,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): BINARIES, PULSATIONS, AND EXPLOSIONS , 2015, 1506.03146.

[61]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[62]  G. Meynet,et al.  Evolution and fate of very massive stars , 2013, 1305.2099.

[63]  Chris L. Fryer,et al.  Common envelope evolution: where we stand and how we can move forward , 2012, The Astronomy and Astrophysics Review.

[64]  C. Evans,et al.  Binary Interaction Dominates the Evolution of Massive Stars , 2012, Science.

[65]  M. Davies,et al.  Investigating stellar‐mass black hole kicks , 2012, 1203.3077.

[66]  Timothy D. Brandt,et al.  The hydrodynamic origin of neutron star kicks , 2011, 1112.3342.

[67]  S. Bose,et al.  Sensitivity studies for third-generation gravitational wave observatories , 2010, 1012.0908.

[68]  Benno Willke,et al.  The Einstein Telescope: a third-generation gravitational wave observatory , 2010 .

[69]  D. C. Herrera,et al.  Micromegas readouts for double beta decay searches , 2010, 1009.1827.

[70]  Frank Timmes,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.

[71]  Kun Jia,et al.  The binding energy parameter for common envelope evolution , 2010, 1004.4957.

[72]  G. Meynet,et al.  The Geneva stellar evolution code , 2008 .

[73]  Duncan A. Brown,et al.  Rates and Characteristics of Intermediate Mass Ratio Inspirals Detectable by Advanced LIGO , 2007, 0705.0285.

[74]  Chris L. Fryer,et al.  Effects of Neutrino-driven Kicks on the Supernova Explosion Mechanism , 2005, astro-ph/0512033.

[75]  D. Lorimer,et al.  A statistical study of 233 pulsar proper motions , 2005, astro-ph/0504584.

[76]  F. Timmes,et al.  Understanding Compact Object Formation and Natal Kicks. I. Calculation Methods and the Case of GRO J1655–40 , 2004, astro-ph/0411423.

[77]  G. Nelemans,et al.  The distances to Galactic low-mass X-ray binaries: consequences for black hole luminosities and kicks , 2004, astro-ph/0407168.

[78]  N. Soker Energy and angular momentum deposition during common envelope evolution , 2003, astro-ph/0311168.

[79]  C. Tout,et al.  Evolution of binary stars and the effect of tides on binary populations , 2002, astro-ph/0201220.

[80]  Chris L. Fryer,et al.  The Limiting Stellar Initial Mass for Black Hole Formation in Close Binary Systems , 2001, astro-ph/0112539.

[81]  F. Guglielmetti,et al.  A high-velocity black hole on a Galactic-halo orbit in the solar neighbourhood , 2001, Nature.

[82]  S. Woosley,et al.  The Nucleosynthetic Signature of Population III , 2001, astro-ph/0107037.

[83]  J. Cordes,et al.  The Velocity Distribution of Isolated Radio Pulsars , 2001, astro-ph/0106159.

[84]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[85]  C. Tout,et al.  Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity , 2000, astro-ph/0001295.

[86]  Y. Qian,et al.  Parity Violation in Neutrino Transport and the Origin of Pulsar Kicks , 1997, astro-ph/9712043.

[87]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[88]  W. Brandt,et al.  The effects of high-velocity supernova kicks on the orbital properties and sky distributions of neutron-star binaries , 1994, astro-ph/9412023.

[89]  Kris Davidson,et al.  THE LUMINOUS BLUE VARIABLES: ASTROPHYSICAL GEYSERS , 1994 .

[90]  D. Lorimer,et al.  High birth velocities of radio pulsars , 1994, Nature.

[91]  M. Kool Common Envelope Evolution and Double Cores of Planetary Nebulae , 1990 .

[92]  A. Burrows,et al.  The birth of neutron stars , 1986 .

[93]  P. K. Panda,et al.  UvA-DARE (Digital Academic Properties and Astrophysical Implications of the 150 M⊙ Binary Black Hole Merger GW190521 , 2020 .

[94]  Astronomy & Astrophysics manuscript no. , 1991 .

[95]  H. Lamers,et al.  UvA-DARE ( Digital Academic Repository ) Mass-loss predictions for 0 and B stars as a fuction of metallicity , 2022 .