Singularity-free gravitational collapse and asymptotic safety

Abstract A general class of quantum improved stellar models with interiors composed of non-interacting (dust) particles is obtained and analyzed in a framework compatible with asymptotic safety. First, the effective exterior, based on the Quantum Einstein Gravity approach to asymptotic safety is presented and, second, its effective compatible dust interiors are deduced. The resulting stellar models appear to be devoid of shell-focusing singularities.

[1]  Behrouz Mirza,et al.  Asymptotic safety, singularities, and gravitational collapse , 2010, 1008.2768.

[2]  L. Modesto Semiclassical Loop Quantum Black Hole , 2010 .

[3]  J. Griffiths,et al.  Exact Space-Times in Einstein's General Relativity , 2009 .

[4]  Alfio Bonanno,et al.  Spacetime structure of an evaporating black hole in quantum gravity , 2006 .

[5]  J. Oppenheimer,et al.  On Continued Gravitational Contraction , 1939 .

[6]  H. Bondi Spherically Symmetrical Models in General Relativity , 1947 .

[7]  M. Niedermaier,et al.  The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.

[8]  P. Nicolini Noncommutative Black Holes, The Final Appeal To Quantum Gravity: A Review , 2008, 0807.1939.

[9]  C. Misner,et al.  Observer time as a coordinate in relativistic spherical hydrodynamics. , 1966 .

[10]  W. Israel Singular hypersurfaces and thin shells in general relativity , 1966 .

[11]  J. Carminati,et al.  Algebraic invariants of the Riemann tensor in a four‐dimensional Lorentzian space , 1991 .

[12]  Renormalization group improved black hole spacetimes , 2000, hep-th/0002196.

[13]  R. Newman Strengths of naked singularities in Tolman-Bondi spacetimes , 1986 .

[14]  S. Hawking,et al.  General Relativity; an Einstein Centenary Survey , 1979 .

[15]  K. Lake,et al.  Shell crossings and the Tolman model , 1985 .

[16]  R. Torres On the interior of (quantum) black holes , 2013, 1309.1083.

[17]  Hayward Gravitational energy in spherical symmetry. , 1994, Physical review. D, Particles and fields.

[18]  D. Christodoulou Violation of cosmic censorship in the gravitational collapse of a dust cloud , 1984 .

[19]  F. Fayos,et al.  On the causal characterization of singularities in spherically symmetric spacetimes , 2011, 1204.4651.

[20]  Larry Smarr,et al.  Time functions in numerical relativity: Marginally bound dust collapse , 1979 .

[21]  K. Lake Exact Space-Times in Einstein's General Relativity , 2010 .

[22]  F. Fayos,et al.  General matching of two spherically symmetric spacetimes. , 1996, Physical review. D, Particles and fields.

[23]  Frank Saueressig,et al.  Quantum Einstein gravity , 2012, 1202.2274.

[24]  D. Sharp,et al.  RELATIVISTIC EQUATIONS FOR ADIABATIC, SPHERICALLY SYMMETRIC GRAVITATIONAL COLLAPSE , 1964 .