Classificação de padrões de savana usando assinaturas temporais NDVI do sensor MODLS no Parque Nacional Chapada dos Veadeiros

Savannas are the main vegetation type in Central Brazil, covering approximately 23% of the national territory. Locally known as Cerrado, Brazilian Savannas are formed by amosaic of different physiognomies such as grassland, shrubland and woodland that have atypical phenological cycle. ln this context, the MODIS data provide daily measurements well suited to monitor the seasonal phenology of vegetation. The present work aims to evaluate the advantages of the temporal signatures to detect Brazilian Savanna vegetation types in the Chapada dos Veadeiros National Park, Brazil. The adopted methodology may be subdivided into the following steps: (a) elaboration of the 3D cube of NDVI from temporal MODIS images, where the z profile corresponding to temporal signature, (b) noise elimination by combining Median Filter and Minimum Noise Fraction techniques, (c) endmember detection, and (d) spectral classification using Spectral Correlation Mapper method. The results demonstrate that the savanna physiognomies present typical temporal signatures. The endmembers correspond to the three major physiognomic domains: (a) Cerrado grassland, herbaceous dominated region; (b) Cerrado, mostly amixture of grasses and shrubs; and (c) Cerrado woodland, densely covered by trees. Comparison with Landsat 7/ETM+ image demonstrates the classification efficiency of the temporal series. The study concluded that the NDVI series is useful in differentiating the amount of vegetation types The methodology efficiency has been proved for regional delimitation of savanna physiognomies even considering the low spatial resolution of the 250m MODIS sensor and the high spectral mixture.

[1]  L. Richardson,et al.  Remote Sensing of Algal Bloom DynamicsNew research fuses remote sensing of aquatic ecosystems with algal accessory pigment analysis , 1996 .

[2]  Gregory Asner,et al.  Endmember bundles: a new approach to incorporating endmember variability into spectral mixture analysis , 2000, IEEE Trans. Geosci. Remote. Sens..

[3]  P. Switzer,et al.  A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .

[4]  O. Junior,et al.  UTILIZAÇÃO DO CLASSIFICADOR SPECTRAL CORRELATION MAPPER EM IMAGENS TM-LANDSAT , 2002 .

[5]  P. R. Meneses,et al.  Spectral Correlation Mapper ( SCM ) : An Improvement on the Spectral Angle Mapper ( SAM ) , 2000 .

[6]  M. C. Hansena,et al.  Development of a MODIS tree cover validation data set for Western Province , Zambia , 2002 .

[7]  Jesslyn F. Brown,et al.  Measuring phenological variability from satellite imagery , 1994 .

[8]  G. Eiten,et al.  The cerrado vegetation of Brazil , 1972, The Botanical Review.

[9]  Andreas T. Ernst,et al.  ICE: a statistical approach to identifying endmembers in hyperspectral images , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[10]  John F. Mustard,et al.  Optimization of Endmembers Mixture Analysis for Spectral , 2002 .

[11]  S. Sader,et al.  Remote sensing of tropical forests : an overview of research and applications using non-photographic sensors , 1990 .

[12]  Brian Curtiss,et al.  A method for manual endmember selection and spectral unmixing , 1996 .

[13]  J. B. Lee,et al.  Enhancement of high spectral resolution remote-sensing data by a noise-adjusted principal components transform , 1990 .

[14]  J. Townshend,et al.  Global discrimination of land cover types from metrics derived from AVHRR pathfinder data , 1995 .

[15]  R. F. Guimarães,et al.  Análise comparativa do processo de identificação automatizada de membros finais a partir de imagens com diferentes resoluções espectrais para a região de Niquelândia (AVIRIS, ETM+ e ASTER) , 2005 .

[16]  Hui Qing Liu,et al.  A feedback based modification of the NDVI to minimize canopy background and atmospheric noise , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[17]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .

[18]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[19]  Paul E. Johnson,et al.  Quantitative determination of mineral types and abundances from reflectance spectra using principal components analysis , 1985 .

[20]  A. Huete,et al.  Optical characterization of the Brazilian Savanna physiognomies for improved land cover monitoring of the cerrado biome: preliminary assessments from an airborne campaign over an LBA core site , 2004 .

[21]  Yosio Edemir Shimabukuro,et al.  Integração de dados de sensoriamento remoto multi resoluções para a representação da cobertura da terra utilizando campos contínuos de vegetação e classificação por árvores de decisão , 2007 .

[22]  E. E. Sano,et al.  Assessing the spatial distribution of cultivated pastures in the Brazilian savanna. , 2000 .

[23]  Renato Fontes Guimarães,et al.  IDENTIFICAÇÃO REGIONAL DA FLORESTA ESTACIONAL DECIDUAL NA BACIA DO RIO PARANÃ A PARTIR DA ANÁLISE MULTITEMPORAL DE IMAGENS MODIS , 2006 .

[24]  Alba Valéria Rezende,et al.  Estudo fenológico de Stryphnodendron adstringens (Mart.) Coville no cerrado sensu stricto da Fazenda Água Limpa no Distrito Federal, Brasil , 1999 .

[25]  C. E. Doll,et al.  Overview of TDRSS , 1995 .

[26]  J. C. Price Estimating vegetation amount from visible and near infrared reflectances , 1992 .

[27]  G. Woodwell,et al.  Map of the vegetation of South America based on satellite imagery , 1994 .

[28]  G. Asner Biophysical and Biochemical Sources of Variability in Canopy Reflectance , 1998 .

[29]  Bruce Dickson,et al.  Noise reduction of aerial gamma-ray surveys , 1998 .

[30]  F. G.,et al.  DISCRIMINATION AND BIOPHYSICAL CHARACTERIZATION OF CERRADO PHYSIOGNOMIES WITH EO-1 HYPERSPECTRAL HYPERION , 2003 .

[31]  D. Roy,et al.  Achieving sub-pixel geolocation accuracy in support of MODIS land science , 2002 .

[32]  V. Ambrosia,et al.  The detection of algal photosynthetic accessory pigments using airborne visible-infrared imaging spectrometer (AVIRIS) spectral data , 1994 .

[33]  J. W. Boardman,et al.  FIFTEEN YEARS OF HYPERSPECTRAL DATA: NORTHERN GRAPEVINE MOUNTAINS, NEVADA , 1999 .

[34]  R. F. Guimarães,et al.  Classificação e eliminação dos ruídos em imagens hiperespectrais pela análise seqüencial da transformação por Fração de Ruído Mínima , 2002 .

[35]  J. Townshend,et al.  NDVI-derived land cover classifications at a global scale , 1994 .

[36]  D. Roy,et al.  An overview of MODIS Land data processing and product status , 2002 .

[37]  P. J. Curran,et al.  Multispectral remote sensing for the estimation of green leaf area index , 1983, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.