Almost sure identifiability of multidimensional harmonic retrieval

Two-dimensional (2-D) and more generally multidimensional harmonic retrieval is of interest in a variety of applications. The associated identifiability problem is key in understanding the fundamental limitations of parametric high-resolution methods. In the 2-D case, existing identifiability results indicate that, assuming sampling at Nyquist or above, the number of resolvable exponentials is proportional to I+J, where I is the number of (equispaced) samples along one dimension, and J likewise for the other dimension. We prove that the number of resolvable exponentials is roughly IJ/4, almost surely. This is not far from the equations-versus-unknowns bound of IJ/3. We then generalize the result to the N-D case for any N>2, showing that, under quite general conditions, the number of resolvable exponentials is, proportional to the total sample size, hence grows exponentially with the number of dimensions.

[1]  Josef A. Nossek,et al.  3-D unitary ESPRIT for joint 2-D angle and carrier estimation , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[2]  Michael D. Zoltowski,et al.  Real-time frequency and 2-D angle estimation with sub-Nyquist spatio-temporal sampling , 1994, IEEE Trans. Signal Process..

[3]  B. Hofmann-Wellenhof,et al.  Introduction to spectral analysis , 1986 .

[4]  Joe Brewer,et al.  Kronecker products and matrix calculus in system theory , 1978 .

[5]  Josef A. Nossek,et al.  Simultaneous Schur decomposition of several nonsymmetric matrices to achieve automatic pairing in multidimensional harmonic retrieval problems , 1998, IEEE Trans. Signal Process..

[6]  Arogyaswami Paulraj,et al.  Estimation of multipath parameters in wireless communications , 1998, IEEE Trans. Signal Process..

[7]  Nikos D. Sidiropoulos,et al.  Blind PARAFAC receivers for DS-CDMA systems , 2000, IEEE Trans. Signal Process..

[8]  Petre Stoica,et al.  Parameter identifiability problem in signal processing , 1994 .

[9]  Nikos D. Sidiropoulos,et al.  On communication diversity for blind identifiability and the uniqueness of low-rank decomposition of N-way arrays , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[10]  Jian Li,et al.  An efficient algorithm for two-dimensional frequency estimation , 1996, Multidimens. Syst. Signal Process..

[11]  Petre Stoica,et al.  MUSIC, maximum likelihood, and Cramer-Rao bound , 1989, IEEE Transactions on Acoustics, Speech, and Signal Processing.

[12]  C. D. Boor,et al.  Polynomial interpolation in several variables , 1994 .

[13]  N. Sidiropoulos,et al.  On the uniqueness of multilinear decomposition of N‐way arrays , 2000 .

[14]  C. Carathéodory,et al.  Über den zusammenhang der extremen von harmonischen funktionen mit ihren koeffizienten und über den picard-landau’schen satz , 1911 .

[15]  G. Pólya,et al.  Functions of One Complex Variable , 1998 .

[16]  R. Lorentz,et al.  Multivariate Birkhoff Interpolation , 1992 .

[17]  Nikos D. Sidiropoulos,et al.  Parallel factor analysis in sensor array processing , 2000, IEEE Trans. Signal Process..

[18]  V. Pisarenko The Retrieval of Harmonics from a Covariance Function , 1973 .

[19]  Emad S. Ebbini Region-adaptive motion tracking of speckle imagery , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[20]  T. Sauer,et al.  On multivariate Hermite interpolation , 1995 .

[21]  Arye Nehorai,et al.  Passive localization of near-field sources by path following , 1994, IEEE Trans. Signal Process..

[22]  Nikos D. Sidiropoulos,et al.  Identifiability results for blind beamforming in incoherent multipath with small delay spread , 2001, IEEE Trans. Signal Process..

[23]  Josef A. Nossek,et al.  Efficient high-resolution 3-D channel sounding , 1998, VTC '98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No.98CH36151).

[24]  Yingbo Hua,et al.  High resolution imaging of continuously moving object using stepped frequency radar , 1994, Signal Process..

[25]  Pál Turán,et al.  Über den Zusammenhang der Extremen von Harmonischen Funktionen mit Ihren Koeffizienten und Über den Picard—Landauschen Satz , 1970 .

[26]  Yingbo Hua,et al.  On rank of block Hankel matrix for 2-D frequency detection and estimation , 1996, IEEE Trans. Signal Process..

[27]  Nikos D. Sidiropoulos,et al.  Generalizing Carathéodory's uniqueness of harmonic parameterization to N dimensions , 2001, IEEE Trans. Inf. Theory.

[28]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[29]  Michael D. Zoltowski,et al.  Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT , 1996, IEEE Trans. Signal Process..