Structures of the CCR5 N Terminus and of a Tyrosine-Sulfated Antibody with HIV-1 gp120 and CD4

The CCR5 co-receptor binds to the HIV-1 gp120 envelope glycoprotein and facilitates HIV-1 entry into cells. Its N terminus is tyrosine-sulfated, as are many antibodies that react with the co-receptor binding site on gp120. We applied nuclear magnetic resonance and crystallographic techniques to analyze the structure of the CCR5 N terminus and that of the tyrosine-sulfated antibody 412d in complex with gp120 and CD4. The conformations of tyrosine-sulfated regions of CCR5 (α-helix) and 412d (extended loop) are surprisingly different. Nonetheless, a critical sulfotyrosine on CCR5 and on 412d induces similar structural rearrangements in gp120. These results now provide a framework for understanding HIV-1 interactions with the CCR5 N terminus during viral entry and define a conserved site on gp120, whose recognition of sulfotyrosine engenders posttranslational mimicry by the immune system.

[1]  R Henderson,et al.  Analysis of electron microscope images and electron diffraction patterns of thin crystals of phi 29 connectors in ice. , 1994, Journal of molecular biology.

[2]  Q. Sattentau,et al.  Conformational changes induced in the human immunodeficiency virus envelope glycoprotein by soluble CD4 binding , 1991, The Journal of experimental medicine.

[3]  J. Briggs,et al.  Structural organization of authentic, mature HIV‐1 virions and cores , 2003, The EMBO journal.

[4]  Marc C. Johnson,et al.  Cryo-electron microscopy reveals conserved and divergent features of gag packing in immature particles of Rous sarcoma virus and human immunodeficiency virus. , 2006, Journal of molecular biology.

[5]  E. Barklis,et al.  Analysis of Rous sarcoma virus capsid protein variants assembled on lipid monolayers. , 2002, Journal of molecular biology.

[6]  Joseph Sodroski,et al.  Tyrosine Sulfation of the Amino Terminus of CCR5 Facilitates HIV-1 Entry , 1999, Cell.

[7]  C. Aiken,et al.  Association of Nef with the Human Immunodeficiency Virus Type 1 Core , 1999, Journal of Virology.

[8]  P. Prevelige,et al.  Key interactions in HIV-1 maturation identified by hydrogen-deuterium exchange , 2004, Nature Structural &Molecular Biology.

[9]  Emmanuel G. Cormier,et al.  The Crown and Stem of the V3 Loop Play Distinct Roles in Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Interactions with the CCR5 Coreceptor , 2002, Journal of Virology.

[10]  H. Göttlinger,et al.  Isolation of Human Immunodeficiency Virus Type 1 Cores: Retention of Vpr in the Absence of p6gag , 2000, Journal of Virology.

[11]  W. Sundquist,et al.  Assembly and analysis of conical models for the HIV-1 core. , 1999, Science.

[12]  G. Wagner,et al.  Domain-swapped dimerization of the HIV-1 capsid C-terminal domain , 2007, Proceedings of the National Academy of Sciences.

[13]  E. Eisenmesser,et al.  Structure and self-association of the Rous sarcoma virus capsid protein. , 2000, Structure.

[14]  W. Sundquist,et al.  Proteolytic refolding of the HIV‐1 capsid protein amino‐terminus facilitates viral core assembly , 1998, The EMBO journal.

[15]  Anchi Cheng,et al.  Automated molecular microscopy: the new Leginon system. , 2005, Journal of structural biology.

[16]  C. Lawson,et al.  Model for lentivirus capsid core assembly based on crystal dimers of EIAV p26. , 1999, Journal of molecular biology.

[17]  I. Taylor,et al.  High-resolution structure of a retroviral capsid hexameric amino-terminal domain , 2004, Nature.

[18]  S W Lin,et al.  Specific interaction of CCR5 amino-terminal domain peptides containing sulfotyrosines with HIV-1 envelope glycoprotein gp120. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[19]  K. Wüthrich NMR of proteins and nucleic acids , 1988 .

[20]  P. Prevelige,et al.  Identification of novel interactions in HIV-1 capsid protein assembly by high-resolution mass spectrometry. , 2003, Journal of molecular biology.

[21]  Vm Vogt Retroviral Virions and Genomes , 1997 .

[22]  H. Göttlinger,et al.  The HIV-1 assembly machine. , 2001, AIDS.

[23]  W. Sundquist,et al.  Implications for viral capsid assembly from crystal structures of HIV-1 Gag(1-278) and CA(N)(133-278). , 2006, Biochemistry.

[24]  J. Lepault,et al.  Structure of purple membrane from halobacterium halobium: recording, measurement and evaluation of electron micrographs at 3.5 Å resolution , 1986 .

[25]  Wesley I. Sundquist,et al.  Functional Surfaces of the Human Immunodeficiency Virus Type 1 Capsid Protein , 2003, Journal of Virology.

[26]  William C. Olson,et al.  Mapping the Determinants of the CCR5 Amino-Terminal Sulfopeptide Interaction with Soluble Human Immunodeficiency Virus Type 1 gp120-CD4 Complexes , 2001, Journal of Virology.

[27]  M. Summers,et al.  Structure of the N-terminal 283-residue fragment of the immature HIV-1 Gag polyprotein , 2002, Nature Structural Biology.

[28]  Carol Carter,et al.  Crystal structure of dimeric HIV-1 capsid protein , 1996, Nature Structural Biology.

[29]  A. Cheng,et al.  A graphical representation of image quality for three-dimensional structure analysis of two-dimensional crystals. , 2004, Acta crystallographica. Section A, Foundations of crystallography.

[30]  M. Summers,et al.  Solution structure of the capsid protein from the human T-cell leukemia virus type-I. , 1999, Journal of molecular biology.

[31]  J. Stoker,et al.  The Department of Health and Human Services. , 1999, Home healthcare nurse.

[32]  Richard A Koup,et al.  Homozygous Defect in HIV-1 Coreceptor Accounts for Resistance of Some Multiply-Exposed Individuals to HIV-1 Infection , 1996, Cell.

[33]  J. Mccammon,et al.  Situs: A package for docking crystal structures into low-resolution maps from electron microscopy. , 1999, Journal of structural biology.

[34]  H. Kräusslich,et al.  Biochemical and Structural Analysis of Isolated Mature Cores of Human Immunodeficiency Virus Type 1 , 2000, Journal of Virology.

[35]  T. Dragic An overview of the determinants of CCR5 and CXCR4 co-receptor function. , 2001, The Journal of general virology.

[36]  Oliver Hartley,et al.  V3: HIV's switch-hitter. , 2005, AIDS research and human retroviruses.

[37]  R. Doms,et al.  Two distinct CCR5 domains can mediate coreceptor usage by human immunodeficiency virus type 1 , 1997, Journal of virology.

[38]  R. Henderson,et al.  Three-dimensional structure determination by electron microscopy of two-dimensional crystals. , 1982, Progress in biophysics and molecular biology.

[39]  E. Kabat,et al.  Sequences of proteins of immunological interest , 1991 .

[40]  N. Tjandra,et al.  Structural analysis of the N-terminal domain of the human T-cell leukemia virus capsid protein. , 2001, Journal of molecular biology.

[41]  F. Quiocho Atomic basis of the exquisite specificity of phosphate and sulfate transport receptors. , 1996, Kidney international.

[42]  R. Henderson,et al.  Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. , 1990, Journal of molecular biology.

[43]  S. Cusack,et al.  Head‐to‐tail dimers and interdomain flexibility revealed by the crystal structure of HIV‐1 capsid protein (p24) complexed with a monoclonal antibody Fab , 1999, The EMBO journal.

[44]  J. Sodroski,et al.  The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. , 1998, Science.

[45]  J. Wills,et al.  Second-Site Suppressors of Rous Sarcoma Virus CA Mutations: Evidence for Interdomain Interactions , 2001, Journal of Virology.

[46]  R A Crowther,et al.  MRC image processing programs. , 1996, Journal of structural biology.

[47]  E. Hunter,et al.  Analysis of Mason-Pfizer Monkey Virus Gag Particles by Scanning Transmission Electron Microscopy , 2001, Journal of Virology.

[48]  P. Chacón,et al.  Multi-resolution contour-based fitting of macromolecular structures. , 2002, Journal of molecular biology.

[49]  E. Rosenberg,et al.  Functional Mimicry of a Human Immunodeficiency Virus Type 1 Coreceptor by a Neutralizing Monoclonal Antibody , 2005, Journal of Virology.

[50]  H. Kräusslich,et al.  N-Terminal Extension of Human Immunodeficiency Virus Capsid Protein Converts the In Vitro Assembly Phenotype from Tubular to Spherical Particles , 1998, Journal of Virology.

[51]  M. Summers,et al.  Solution structure and dynamics of the Rous sarcoma virus capsid protein and comparison with capsid proteins of other retroviruses. , 2000, Journal of molecular biology.

[52]  W. Sundquist,et al.  Biological Crystallography Structures of the Hiv-1 Capsid Protein Dimerization Domain at 2.6 a Ê Resolution , 2022 .

[53]  Wesley I. Sundquist,et al.  Assembly Properties of the Human Immunodeficiency Virus Type 1 CA Protein , 2004, Journal of Virology.

[54]  E. Barklis,et al.  Retrovirus capsid protein assembly arrangements. , 2003, Journal of molecular biology.

[55]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[56]  J. Feeney,et al.  Use of transferred nuclear Overhauser effect measurements to compare binding of coenzyme analogues to dihydrofolate reductase. , 1983, Biochemistry.

[57]  S. Fuller,et al.  A conformational switch controlling HIV‐1 morphogenesis , 2000, The EMBO journal.

[58]  John E. Johnson,et al.  The role of subunit hinges and molecular "switches" in the control of viral capsid polymorphism. , 2006, Journal of structural biology.

[59]  Eric Barklis,et al.  Antiviral inhibition of the HIV-1 capsid protein. , 2003, Journal of molecular biology.

[60]  John P. Moore,et al.  Alanine Substitutions of Polar and Nonpolar Residues in the Amino-Terminal Domain of CCR5 Differently Impair Entry of Macrophage- and Dualtropic Isolates of Human Immunodeficiency Virus Type 1 , 1998, Journal of Virology.

[61]  Hans-Georg Kräusslich,et al.  The HIV-1 capsid protein C-terminal domain in complex with a virus assembly inhibitor , 2005, Nature Structural &Molecular Biology.

[62]  J. Bockaert,et al.  Molecular tinkering of G protein‐coupled receptors: an evolutionary success , 1999, The EMBO journal.

[63]  Wesley I. Sundquist,et al.  Structure of the Amino-Terminal Core Domain of the HIV-1 Capsid Protein , 1996, Science.

[64]  J. Sodroski,et al.  Fine definition of a conserved CCR5-binding region on the human immunodeficiency virus type 1 glycoprotein 120. , 2000, AIDS research and human retroviruses.

[65]  Wesley I. Sundquist,et al.  Image reconstructions of helical assemblies of the HIV-1 CA protein , 2022 .

[66]  Wayne A Hendrickson,et al.  Structural basis of tyrosine sulfation and VH-gene usage in antibodies that recognize the HIV type 1 coreceptor-binding site on gp120. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Marc C. Johnson,et al.  The stoichiometry of Gag protein in HIV-1 , 2004, Nature Structural &Molecular Biology.

[68]  Barbara Müller,et al.  A peptide inhibitor of HIV-1 assembly in vitro , 2005, Nature Structural &Molecular Biology.

[69]  Christoph Grundner,et al.  Tyrosine Sulfation of Human Antibodies Contributes to Recognition of the CCR5 Binding Region of HIV-1 gp120 , 2003, Cell.

[70]  C. Carter,et al.  Assembly of recombinant human immunodeficiency virus type 1 capsid protein in vitro , 1992, Journal of virology.

[71]  Bette Korber,et al.  Structure of a V3-Containing HIV-1 gp120 Core , 2005, Science.

[72]  Ying Sun,et al.  A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding. , 1998, Science.

[73]  W. Sundquist,et al.  Crystal Structure of Human Cyclophilin A Bound to the Amino-Terminal Domain of HIV-1 Capsid , 1996, Cell.

[74]  J. Farber,et al.  Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. , 1999, Annual review of immunology.

[75]  H. Kräusslich Morphogenesis and Maturation of Retroviruses , 1996, Current Topics in Microbiology and Immunology.

[76]  B. Meyer,et al.  Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. , 2001, Journal of the American Chemical Society.

[77]  W. Sundquist,et al.  Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. , 1997, Science.

[78]  P. Brown,et al.  Supramolecular organization of immature and mature murine leukemia virus revealed by electron cryo-microscopy: implications for retroviral assembly mechanisms. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[79]  J. Culp,et al.  Characterization of HIV‐1 p24 self‐association using analytical affinity chromatography , 1992, Proteins.