RNA polymerase I contains a TFIIF-related DNA-binding subcomplex.

The eukaryotic RNA polymerases Pol I, II, and III use different promoters to transcribe different classes of genes. Promoter usage relies on initiation factors, including TFIIF and TFIIE, in the case of Pol II. Here, we show that the Pol I-specific subunits A49 and A34.5 form a subcomplex that binds DNA and is related to TFIIF and TFIIE. The N-terminal regions of A49 and A34.5 form a dimerization module that stimulates polymerase-intrinsic RNA cleavage and has a fold that resembles the TFIIF core. The C-terminal region of A49 forms a "tandem winged helix" (tWH) domain that binds DNA with a preference for the upstream promoter nontemplate strand and is predicted in TFIIE. Similar domains are predicted in Pol III-specific subunits. Thus, Pol I/III subunits that have no counterparts in Pol II are evolutionarily related to Pol II initiation factors and may have evolved to mediate promoter specificity and transcription processivity.

[1]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Likelihood-enhanced Fast Translation Functions Biological Crystallography Likelihood-enhanced Fast Translation Functions , 2022 .

[2]  W. Kabsch A solution for the best rotation to relate two sets of vectors , 1976 .

[3]  T. Moss,et al.  A housekeeper with power of attorney: the rRNA genes in ribosome biogenesis , 2006, Cellular and Molecular Life Sciences.

[4]  Kevin Cowtan,et al.  Recent developments in classical density modification , 2010, Acta crystallographica. Section D, Biological crystallography.

[5]  F. Hanaoka,et al.  Structure of the central core domain of TFIIEβ with a novel double‐stranded DNA‐binding surface , 2000, The EMBO journal.

[6]  R. Planta,et al.  Linker scanning of the yeast RNA polymerase I promoter. , 1989, Nucleic acids research.

[7]  M. Paule,et al.  Photocross-linking of the RNA Polymerase I Preinitiation and Immediate Postinitiation Complexes , 2004, Journal of Biological Chemistry.

[8]  C. Sander,et al.  Dali: a network tool for protein structure comparison. , 1995, Trends in biochemical sciences.

[9]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[10]  L. Kenney Structure/function relationships in OmpR and other winged-helix transcription factors. , 2002, Current opinion in microbiology.

[11]  Z. Wang,et al.  Three human RNA polymerase III-specific subunits form a subcomplex with a selective function in specific transcription initiation. , 1997, Genes & development.

[12]  R. Conaway,et al.  Dissection of transcription factor TFIIF functional domains required for initiation and elongation. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[13]  K. Yamamoto,et al.  RNA polymerase I associated factor 53 binds to the nucleolar transcription factor UBF and functions in specific rDNA transcription. , 1996, The EMBO journal.

[14]  J. Buhler,et al.  Association of RNase H activity with yeast RNA polymerase A , 1976, Nature.

[15]  Johannes Söding,et al.  The MPI Bioinformatics Toolkit for protein sequence analysis , 2006, Nucleic Acids Res..

[16]  Albert J R Heck,et al.  Improving the performance of a quadrupole time-of-flight instrument for macromolecular mass spectrometry. , 2006, Analytical chemistry.

[17]  C. Robinson,et al.  Protein complexes in the gas phase: technology for structural genomics and proteomics. , 2007, Chemical reviews.

[18]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[19]  M. Mann,et al.  Association of Yeast RNA Polymerase I with a Nucleolar Substructure Active in Rrna Synthesis and Processing , 2000, The Journal of cell biology.

[20]  P. Cramer,et al.  An Extended Winged Helix Domain in General Transcription Factor E/IIEα* , 2003, Journal of Biological Chemistry.

[21]  F. Hanaoka,et al.  Central forkhead domain of human TFIIEβ plays a primary role in binding double‐stranded DNA at transcription initiation , 2009, Genes to cells : devoted to molecular & cellular mechanisms.

[22]  J. Acker,et al.  A subcomplex of RNA polymerase III subunits involved in transcription termination and reinitiation , 2006, The EMBO journal.

[23]  P. Adams,et al.  Electronic Reprint Biological Crystallography a Robust Bulk-solvent Correction and Anisotropic Scaling Procedure Afonine Et Al. ¯ Bulk-solvent Correction and Anisotropic Scaling Biological Crystallography a Robust Bulk-solvent Correction and Anisotropic Scaling Procedure , 2004 .

[24]  G. Bricogne,et al.  [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. , 1997, Methods in enzymology.

[25]  Quincy Teng,et al.  Structural Biology , 2013, Springer US.

[26]  C. Eckerskorn,et al.  High-level biosynthetic substitution of methionine in proteins by its analogs 2-aminohexanoic acid, selenomethionine, telluromethionine and ethionine in Escherichia coli. , 1995, European journal of biochemistry.

[27]  P. Cramer,et al.  Functional Architecture of RNA Polymerase I , 2007, Cell.

[28]  J. Buhler,et al.  Characterization and mutagenesis of the gene encoding the A49 subunit of RNA polymerase A in Saccharomyces cerevisiae. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[29]  P. Cramer,et al.  Crystallization of RNA polymerase I subcomplex A14/A43 by iterative prediction, probing and removal of flexible regions. , 2008, Acta crystallographica. Section F, Structural biology and crystallization communications.

[30]  P. Cramer,et al.  Architecture of the RNA polymerase II–TFIIF complex revealed by cross-linking and mass spectrometry , 2010, EMBO Journal.

[31]  A. Sentenac,et al.  Dual role of the C34 subunit of RNA polymerase III in transcription initiation , 1997, The EMBO journal.

[32]  T. Matsuyama,et al.  Nucleolar targeting of proteins by the tandem array of basic amino acid stretches identified in the RNA polymerase I-associated factor PAF49. , 2008, Biochemical and biophysical research communications.

[33]  P. Cramer,et al.  Structural biology of RNA polymerase III: mass spectrometry elucidates subcomplex architecture. , 2007, Structure.

[34]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Julio O. Ortiz,et al.  A movie of the RNA polymerase nucleotide addition cycle. , 2009, Current opinion in structural biology.

[36]  M. Karplus,et al.  Evaluation of comparative protein modeling by MODELLER , 1995, Proteins.

[37]  G. Bricogne,et al.  Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. , 2004, Acta crystallographica. Section D, Biological crystallography.

[38]  S. Hubbard,et al.  The structural aspects of limited proteolysis of native proteins. , 1998, Biochimica et biophysica acta.

[39]  Wolfgang Kabsch,et al.  Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants , 1993 .

[40]  C. Carles,et al.  Cryo-negative staining reveals conformational flexibility within yeast RNA polymerase I. , 2003, Journal of molecular biology.

[41]  J. Abrahams,et al.  Methods used in the structure determination of bovine mitochondrial F1 ATPase. , 1996, Acta crystallographica. Section D, Biological crystallography.

[42]  D S Moss,et al.  Main-chain bond lengths and bond angles in protein structures. , 1993, Journal of molecular biology.

[43]  S K Burley,et al.  Crystal structure of the C-terminal domain of the RAP74 subunit of human transcription factor IIF , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[44]  George M Sheldrick,et al.  Substructure solution with SHELXD. , 2002, Acta crystallographica. Section D, Biological crystallography.

[45]  Thomas R. Schneider,et al.  HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs , 2004 .

[46]  D. Reinberg,et al.  Factors involved in specific transcription by mammalian RNA polymerase II. Purification and subunit composition of transcription factor IIF. , 1990, The Journal of biological chemistry.

[47]  G. Drouin,et al.  The increase in the number of subunits in eukaryotic RNA polymerase III relative to RNA polymerase II is due to the permanent recruitment of general transcription factors. , 2010, Molecular biology and evolution.

[48]  Anton Meinhart,et al.  Structures of Complete RNA Polymerase II and Its Subcomplex, Rpb4/7* , 2005, Journal of Biological Chemistry.

[49]  Johannes Söding,et al.  The HHpred interactive server for protein homology detection and structure prediction , 2005, Nucleic Acids Res..

[50]  R. Brennan The winged-helix DNA-binding motif: Another helix-turn-helix takeoff , 1993, Cell.

[51]  T. Richmond,et al.  Novel dimerization fold of RAP30/RAP74 in human TFIIF at 1.7 A resolution. , 2000, Journal of molecular biology.

[52]  Paul D. Adams,et al.  A robust bulk-solvent correction and anisotropic scaling procedure , 2005, Acta crystallographica. Section D, Biological crystallography.

[53]  C. Carles,et al.  Insights into transcription initiation and termination from the electron microscopy structure of yeast RNA polymerase III. , 2007, Molecular cell.

[54]  G. Kassavetis,et al.  The C53/C37 Subcomplex of RNA Polymerase III Lies Near the Active Site and Participates in Promoter Opening* , 2009, The Journal of Biological Chemistry.

[55]  Y. Nogi,et al.  The fission yeast RPA51 is a functional homolog of the budding yeast A49 subunit of RNA polymerase I and required for maximizing transcription of ribosomal DNA. , 2003, Genes & genetic systems.

[56]  Serge X. Cohen,et al.  Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7 , 2008, Nature Protocols.

[57]  M. H. Werner,et al.  Structural homology between the Rap30 DNA-binding domain and linker histone H5: implications for preinitiation complex assembly. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[58]  J. Greenblatt,et al.  The general transcription factor RAP30 binds to RNA polymerase II and prevents it from binding nonspecifically to DNA , 1992, Molecular and cellular biology.

[59]  R. Brennan,et al.  Structure of an OhrR-ohrA operator complex reveals the DNA binding mechanism of the MarR family. , 2005, Molecular cell.

[60]  P. Cramer,et al.  Structure of eukaryotic RNA polymerases. , 2008, Annual review of biophysics.

[61]  P. Cramer,et al.  Structural biology of RNA polymerase III: subcomplex C17/25 X-ray structure and 11 subunit enzyme model. , 2006, Molecular cell.

[62]  P. Thuriaux,et al.  Two RNA Polymerase I Subunits Control the Binding and Release of Rrn3 during Transcription , 2007, Molecular and Cellular Biology.

[63]  R. Roeder,et al.  Analysis of the Role of TFIIE in Transcriptional Regulation through Structure-Function Studies of the TFIIEβ Subunit* , 1998, The Journal of Biological Chemistry.

[64]  A. Heck Native mass spectrometry: a bridge between interactomics and structural biology , 2008, Nature Methods.

[65]  M. Paule,et al.  DNA melting and promoter clearance by eukaryotic RNA polymerase I. , 2000, Journal of molecular biology.

[66]  R. Reeder,et al.  In vitro definition of the yeast RNA polymerase I promoter. , 1992, Nucleic acids research.

[67]  R. Planta,et al.  The yeast RNA polymerase I promoter: ribosomal DNA sequences involved in transcription initiation and complex formation in vitro. , 1991, Nucleic acids research.

[68]  A. Heck,et al.  Optimizing macromolecular tandem mass spectrometry of large non-covalent complexes using heavy collision gases , 2007 .

[69]  S K Burley,et al.  Winged helix proteins. , 2000, Current opinion in structural biology.