Massive expansion and diversity of nicotinic acetylcholine receptors in lophotrochozoans

[1]  Lingling Wang,et al.  The Cholinergic and Adrenergic Autocrine Signaling Pathway Mediates Immunomodulation in Oyster Crassostrea gigas , 2018, Front. Immunol..

[2]  Ruiqiang Li,et al.  Scallop genome reveals molecular adaptations to semi-sessile life and neurotoxins , 2017, Nature Communications.

[3]  Haiying Liang,et al.  The pearl oyster Pinctada fucata martensii genome and multi-omic analyses provide insights into biomineralization , 2017, GigaScience.

[4]  Ruiqiang Li,et al.  Scallop genome provides insights into evolution of bilaterian karyotype and development , 2017, Nature Ecology &Evolution.

[5]  Yanjie Zhang,et al.  Adaptation to deep-sea chemosynthetic environments as revealed by mussel genomes , 2017, Nature Ecology &Evolution.

[6]  Izabela Makałowska,et al.  Protein-Coding Genes’ Retrocopies and Their Functions , 2017, Viruses.

[7]  Jinyang Zhao,et al.  Genome sequencing of the sweetpotato whitefly Bemisia tabaci MED/Q , 2017, GigaScience.

[8]  Ying Sun,et al.  The simple neuroendocrine-immune regulatory network in oyster Crassostrea gigas mediates complex functions , 2016, Scientific Reports.

[9]  Sudhir Kumar,et al.  MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. , 2016, Molecular biology and evolution.

[10]  Ximing Guo,et al.  Infectious diseases of marine molluscs and host responses as revealed by genomic tools , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[11]  Mengqiang Wang,et al.  The immunomodulation of nicotinic acetylcholine receptor subunits in Zhikong scallop Chlamys farreri. , 2015, Fish & shellfish immunology.

[12]  Ximing Guo,et al.  Transcriptome analysis reveals strong and complex antiviral response in a mollusc. , 2015, Fish & shellfish immunology.

[13]  Robert Freedman,et al.  The human CHRNA7 and CHRFAM7A genes: A review of the genetics, regulation, and function , 2015, Neuropharmacology.

[14]  Ximing Guo,et al.  Immune and stress responses in oysters with insights on adaptation. , 2015, Fish & shellfish immunology.

[15]  G. Litman,et al.  Massive expansion and functional divergence of innate immune genes in a protostome , 2015, Scientific Reports.

[16]  K. Grant,et al.  Nicotinic receptors in non-human primates: analysis of genetic and functional conservation with humans , 2015, Neuropharmacology.

[17]  Lingling Wang,et al.  Acetylcholine modulates the immune response in Zhikong scallop Chlamys farreri. , 2014, Fish & shellfish immunology.

[18]  J. Changeux The Nicotinic Acetylcholine Receptor: The Founding Father of the Pentameric Ligand-gated Ion Channel Superfamily* , 2012, The Journal of Biological Chemistry.

[19]  Qiang Wang,et al.  The oyster genome reveals stress adaptation and complexity of shell formation , 2012, Nature.

[20]  J. Dupuis,et al.  Insights from honeybee (Apis mellifera) and fly (Drosophila melanogaster) nicotinic acetylcholine receptors: From genes to behavioral functions , 2012, Neuroscience & Biobehavioral Reviews.

[21]  Ming Zou,et al.  The Roles and Evolutionary Patterns of Intronless Genes in Deuterostomes , 2011, Comparative and functional genomics.

[22]  I. Rogozin,et al.  Primate and Rodent Specific Intron Gains and the Origin of Retrogenes with Splice Variants , 2010, Molecular biology and evolution.

[23]  J. Sussman,et al.  Acetylcholinesterase: from 3D structure to function. , 2010, Chemico-biological interactions.

[24]  A. Adhikari,et al.  Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation , 2009, Cell Communication and Signaling.

[25]  M. Skok Editorial: To channel or not to channel? Functioning of nicotinic acetylcholine receptors in leukocytes , 2009, Journal of leukocyte biology.

[26]  M. Gerstein,et al.  Comparative analysis of processed ribosomal protein pseudogenes in four mammalian genomes , 2009, Genome Biology.

[27]  J. Bähler,et al.  Rapidly regulated genes are intron poor. , 2008, Trends in genetics : TIG.

[28]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[29]  J. Changeux,et al.  A prokaryotic proton-gated ion channel from the nicotinic acetylcholine receptor family , 2007, Nature.

[30]  Joel Dudley,et al.  TimeTree: a public knowledge-base of divergence times among organisms , 2006, Bioinform..

[31]  S. Sine,et al.  Recent advances in Cys-loop receptor structure and function , 2006, Nature.

[32]  P. Hiesinger,et al.  The Nicotinic Acetylcholine Receptor Dα7 Is Required for an Escape Behavior inDrosophila , 2006, PLoS biology.

[33]  D. Bertrand,et al.  Identification and Functional Expression of a Family of Nicotinic Acetylcholine Receptor Subunits in the Central Nervous System of the Mollusc Lymnaea stagnalis* , 2006, Journal of Biological Chemistry.

[34]  D. Bertrand,et al.  Identification of Molluscan Nicotinic Acetylcholine Receptor (nAChR) Subunits Involved in Formation of Cation- and Anion-Selective nAChRs , 2005, The Journal of Neuroscience.

[35]  R. Harris,et al.  Nicotine addiction and comorbidity with alcohol abuse and mental illness , 2005, Nature Neuroscience.

[36]  Rolf Apweiler,et al.  InterProScan: protein domains identifier , 2005, Nucleic Acids Res..

[37]  C. Gotti,et al.  Neuronal nicotinic receptors: from structure to pathology , 2004, Progress in Neurobiology.

[38]  K. Wafford,et al.  The Cys-loop superfamily of ligand-gated ion channels: the impact of receptor structure on function. , 2004, Biochemical Society transactions.

[39]  N. Millar Assembly and subunit diversity of nicotinic acetylcholine receptors. , 2003, Biochemical Society transactions.

[40]  Kevin J. Tracey,et al.  Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation , 2002, Nature.

[41]  J. Changeux,et al.  The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences. , 2002, Journal of neurobiology.

[42]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[43]  J. Changeux,et al.  Allosteric mechanisms in normal and pathological nicotinic acetylcholine receptors , 2001, Current Opinion in Neurobiology.

[44]  Carmen Martin-Ruiz,et al.  Nicotinic receptor abnormalities in Alzheimer’s disease , 2001, Biological Psychiatry.

[45]  E X Albuquerque,et al.  Properties of neuronal nicotinic acetylcholine receptors: pharmacological characterization and modulation of synaptic function. , 1997, The Journal of pharmacology and experimental therapeutics.

[46]  E. Albuquerque,et al.  A nicotinic acetylcholine receptor regulating cell adhesion and motility is expressed in human keratinocytes. , 1995, The Journal of investigative dermatology.

[47]  Jeffrey S. Levinton,et al.  Marine Biology: Function, Biodiversity, Ecology , 1995 .

[48]  J. Changeux,et al.  Molecular evolution of the nicotinic acetylcholine receptor: An example of multigene family in excitable cells , 1995, Journal of Molecular Evolution.

[49]  S. Heinemann,et al.  Molecular cloning of cDNA coding for the gamma subunit of Torpedo acetylcholine receptor. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Ming Li Evolutionary Relations of Genes Encoding Nicotinic Acetylcholine Receptor Subunits , 2018 .

[51]  Andrew K. Jones,et al.  Diversity of insect nicotinic acetylcholine receptor subunits. , 2010, Advances in experimental medicine and biology.

[52]  M. Gauthier State of the art on insect nicotinic acetylcholine receptor function in learning and memory. , 2010, Advances in experimental medicine and biology.

[53]  K. Dong,et al.  The nicotinic acetylcholine receptor gene family of the silkworm, Bombyx mori , 2007, BMC Genomics.

[54]  R. Metherate,et al.  Nicotinic acetylcholine receptors in sensory cortex. , 2004, Learning & memory.

[55]  J A Lake,et al.  Evidence for an early prokaryotic origin of histones H2A and H4 prior to the emergence of eukaryotes. , 1998, Nucleic acids research.