Robust estimation of the number of components for mixtures of linear regression models

In this paper, we investigate a robust estimation of the number of components in the mixture of regression models using trimmed information criteria. Compared to the traditional information criteria, the trimmed criteria are robust and not sensitive to outliers. The superiority of the trimmed methods in comparison with the traditional information criterion methods is illustrated through a simulation study. Two real data applications are also used to illustrate the effectiveness of the trimmed model selection methods.

[1]  Chun Yu,et al.  Robust mixture regression using the t-distribution , 2014, Comput. Stat. Data Anal..

[2]  Jiahua Chen,et al.  Hypothesis test for normal mixture models: The EM approach , 2009, 0908.3428.

[3]  Shaheena Bashir,et al.  Robust Mixture of Linear Regression Models , 2012 .

[4]  M. Peruggia Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2nd ed.) , 2003 .

[5]  H. Akaike A new look at the statistical model identification , 1974 .

[6]  T. N. Sriram,et al.  Robust Estimation of Mixture Complexity , 2006 .

[7]  Gérard Govaert,et al.  Assessing a Mixture Model for Clustering with the Integrated Completed Likelihood , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Nils Lid Hjort,et al.  Model Selection and Model Averaging , 2001 .

[9]  J. Kalbfleisch,et al.  A modified likelihood ratio test for homogeneity in finite mixture models , 2001 .

[10]  Weixin Yao,et al.  Robust mixture regression model fitting by Laplace distribution , 2014, Comput. Stat. Data Anal..

[11]  Luis Angel García-Escudero,et al.  Computational Statistics and Data Analysis Robust Clusterwise Linear Regression through Trimming , 2022 .

[12]  Nils Lid Hjort,et al.  Model Selection and Model Averaging: Contents , 2008 .

[13]  J. Rissanen Stochastic Complexity and Modeling , 1986 .

[14]  B. Leroux Consistent estimation of a mixing distribution , 1992 .

[15]  Geoffrey J. McLachlan,et al.  FITTING FINITE MIXTURE MODELS IN A REGRESSION CONTEXT , 1992 .

[16]  Pengfei Li,et al.  Testing the Order of a Finite Mixture , 2010 .

[17]  S. Sclove Application of model-selection criteria to some problems in multivariate analysis , 1987 .

[18]  David R. Hunter,et al.  mixtools: An R Package for Analyzing Mixture Models , 2009 .

[19]  S. Goldfeld,et al.  A Markov model for switching regressions , 1973 .

[20]  Surajit Ray,et al.  Model selection in high dimensions: a quadratic‐risk‐based approach , 2006, math/0611544.

[21]  Peter Filzmoser,et al.  Robust fitting of mixtures using the trimmed likelihood estimator , 2007, Comput. Stat. Data Anal..

[22]  Jiahua Chen,et al.  Order Selection in Finite Mixture Models With a Nonsmooth Penalty , 2008 .

[23]  D. Hunter,et al.  mixtools: An R Package for Analyzing Mixture Models , 2009 .

[24]  Adrian E. Raftery,et al.  How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis , 1998, Comput. J..

[25]  R. Cook,et al.  Identifying Regression Outliers and Mixtures Graphically , 2000 .

[26]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[27]  P. Deb Finite Mixture Models , 2008 .

[28]  G. Celeux,et al.  An entropy criterion for assessing the number of clusters in a mixture model , 1996 .

[29]  H. Bozdogan,et al.  Multi-sample cluster analysis using Akaike's Information Criterion , 1984 .

[30]  R. Hathaway A constrained EM algorithm for univariate normal mixtures , 1986 .

[31]  Weixin Yao,et al.  A profile likelihood method for normal mixture with unequal variance , 2010 .

[32]  Dankmar Böhning,et al.  Computer-Assisted Analysis of Mixtures and Applications , 2000, Technometrics.

[33]  Jiayang Sun,et al.  Testing Homogeneity in a Mixture Distribution via the L2 Distance Between Competing Models , 2004 .

[34]  R. Hathaway A Constrained Formulation of Maximum-Likelihood Estimation for Normal Mixture Distributions , 1985 .

[35]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[36]  H. Bozdogan Choosing the Number of Component Clusters in the Mixture-Model Using a New Informational Complexity Criterion of the Inverse-Fisher Information Matrix , 1993 .

[37]  D. M. Allen,et al.  Determining the number of components in mixtures of linear models , 2001 .

[38]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[39]  John D. Kalbfleisch,et al.  Penalized minimum‐distance estimates in finite mixture models , 1996 .

[40]  Weixin Yao,et al.  Robust fitting of mixture regression models , 2012, Comput. Stat. Data Anal..

[41]  C. Müller,et al.  Breakdown points of trimmed likelihood estimators and related estimators in generalized linear models , 2003 .

[42]  Lancelot F. James,et al.  Consistent estimation of mixture complexity , 2001 .

[43]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[44]  B. Lindsay Mixture models : theory, geometry, and applications , 1995 .

[45]  John D. Kalbfleisch,et al.  Testing for a finite mixture model with two components , 2004 .