A Digital Current-Mode Control Technique for DC–DC Converters

The objective of this paper is to propose a simple digital current mode control technique for dc-dc converters. In the proposed current-mode control method, the inductor current is sampled only once in a switching period. A compensating ramp is used in the modulator to determine the switching instant. The slope of the compensating ramp is determined analytically from the steady-state stability condition. The proposed digital current-mode control is not predictive, therefore the trajectory of the inductor current during the switching period is not estimated in this method, and as a result the computational burden on the digital controller is significantly reduced. It therefore effectively increases the maximum switching frequency of the converter when a particular digital signal processor is used to implement the control algorithm. It is shown that the proposed digital method is versatile enough to implement any one of the average, peak, and valley current mode controls by adjustment of the sampling instant of the inductor current with respect to the turn-on instant of the switch. The proposed digital current-mode control algorithm is tested on a 12-V input and 1.5-V, 7-A output buck converter switched at 100kHz and experimental results are presented

[1]  Seth R. Sanders,et al.  Architecture and IC implementation of a digital VRM controller , 2003 .

[2]  Aleksandar Prodic,et al.  Predictive digital current programmed control , 2003 .

[3]  F.C. Lee,et al.  Analysis of the power delivery path from the 12 V VR to the microprocessor , 2004, Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2004. APEC '04..

[4]  Dejan Markovic,et al.  Digital PWM control: application in voltage regulation modules , 1999, 30th Annual IEEE Power Electronics Specialists Conference. Record. (Cat. No.99CH36321).

[5]  Anantha Chandrakasan,et al.  High-efficiency multiple-output DC-DC conversion for low-voltage systems , 2000, IEEE Trans. Very Large Scale Integr. Syst..

[6]  S. Saggini,et al.  An innovative digital control architecture for low-Voltage, high-current DC-DC converters with tight voltage regulation , 2004, IEEE Transactions on Power Electronics.

[7]  Aleksandar Prodic,et al.  High-frequency digital PWM controller IC for DC-DC converters , 2003 .

[8]  Aleksandar Prodic,et al.  Design and implementation of a digital PWM controller for a high-frequency switching DC-DC power converter , 2001, IECON'01. 27th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.37243).

[9]  A.P. Chandrakasan,et al.  Ultra low power control circuits for PWM converters , 1997, PESC97. Record 28th Annual IEEE Power Electronics Specialists Conference. Formerly Power Conditioning Specialists Conference 1970-71. Power Processing and Electronic Specialists Conference 1972.

[10]  R.D. Middlebrook,et al.  Modelling and analysis of switching DC-to-DC converters in constant-frequency current-programmed mode , 1979, 1979 IEEE Power Electronics Specialists Conference.