Semidefinite programming converse bounds for classical communication over quantum channels

We study the classical communication over quantum channels when assisted by no-signalling (NS) and PPT-preserving (PPT) codes. We first show that both the optimal success probability of a given transmission rate and one-shot ∊-error capacity can be formalized as semidefinite programs (SDPs) when assisted by NS or NS∩PPT codes. Based on this, we derive SDP finite blocklength converse bounds for general quantum channels, which also reduce to the converse bound of Polyanskiy, Poor, and Verdii for classical channels. Furthermore, we derive an SDP strong converse bound for the classical capacity of a general quantum channel: for any code with a rate exceeding this bound, the optimal success probability vanishes exponentially fast as the number of channel uses increases. In particular, applying our efficiently computable bound, we derive improved upper bounds to the classical capacity of the amplitude damping channels and also establish the strong converse property for a new class of quantum channels.

[1]  William Matthews,et al.  On the Power of PPT-Preserving and Non-Signalling Codes , 2014, IEEE Transactions on Information Theory.

[2]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[3]  Runyao Duan,et al.  Improved semidefinite programming upper bound on distillable entanglement , 2016, 1601.07940.

[4]  Masahito Hayashi,et al.  Finite-block-length analysis in classical and quantum information theory , 2016, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[5]  J. Wolfowitz,et al.  Coding Theorems of Information Theory , 1964, Ergebnisse der Mathematik und Ihrer Grenzgebiete.

[6]  S. Wehner,et al.  A strong converse for classical channel coding using entangled inputs. , 2009, Physical review letters.

[7]  R. Renner,et al.  One-shot classical-quantum capacity and hypothesis testing. , 2010, Physical review letters.

[8]  J. Preskill,et al.  Causal and localizable quantum operations , 2001, quant-ph/0102043.

[9]  Runyao Duan,et al.  Separation Between Quantum Lovász Number and Entanglement-Assisted Zero-Error Classical Capacity , 2016, IEEE Transactions on Information Theory.

[10]  Nilanjana Datta,et al.  Generalized relative entropies and the capacity of classical-quantum channels , 2008, 0810.3478.

[11]  Debbie W. Leung,et al.  Zero-Error Channel Capacity and Simulation Assisted by Non-Local Correlations , 2010, IEEE Transactions on Information Theory.

[12]  Salman Beigi,et al.  On the Complexity of Computing Zero-Error and Holevo Capacity of Quantum Channels , 2007, 0709.2090.

[13]  Mario Berta,et al.  Quantum coding with finite resources , 2015, Nature Communications.

[14]  Runyao Duan,et al.  Activated zero-error classical capacity of quantum channels in the presence of quantum no-signalling correlations , 2015, ArXiv.

[15]  William Matthews,et al.  A Linear Program for the Finite Block Length Converse of Polyanskiy–Poor–Verdú Via Nonsignaling Codes , 2011, IEEE Transactions on Information Theory.

[16]  Joseph M. Renes,et al.  Noisy Channel Coding via Privacy Amplification and Information Reconciliation , 2010, IEEE Transactions on Information Theory.

[17]  Runyao Duan,et al.  No-Signalling-Assisted Zero-Error Capacity of Quantum Channels and an Information Theoretic Interpretation of the Lovász Number , 2014, IEEE Transactions on Information Theory.

[18]  Andreas J. Winter,et al.  Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.

[19]  N. Datta,et al.  The apex of the family tree of protocols: optimal rates and resource inequalities , 2011, 1103.1135.

[20]  H. Vincent Poor,et al.  Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.

[21]  M. Hastings Superadditivity of communication capacity using entangled inputs , 2009 .

[22]  Runyao Duan,et al.  A semidefinite programming upper bound of quantum capacity , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[23]  Marco Tomamichel,et al.  Quantum Information Processing with Finite Resources - Mathematical Foundations , 2015, ArXiv.

[24]  William Matthews,et al.  Finite Blocklength Converse Bounds for Quantum Channels , 2012, IEEE Transactions on Information Theory.

[25]  Xiaodi Wu,et al.  An Improved Semidefinite Programming Hierarchy for Testing Entanglement , 2015, ArXiv.

[26]  R. Werner,et al.  Semicausal operations are semilocalizable , 2001, quant-ph/0104027.

[27]  Nilanjana Datta,et al.  A Smooth Entropy Approach to Quantum Hypothesis Testing and the Classical Capacity of Quantum Channels , 2011, IEEE Transactions on Information Theory.

[28]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[29]  Eric M. Rains A semidefinite program for distillable entanglement , 2001, IEEE Trans. Inf. Theory.

[30]  M. Horodecki,et al.  Properties of quantum nonsignaling boxes (13 pages) , 2006 .

[31]  Tomohiro Ogawa,et al.  Strong converse to the quantum channel coding theorem , 1999, IEEE Trans. Inf. Theory.

[32]  J Eisert,et al.  Entangled inputs cannot make imperfect quantum channels perfect. , 2010, Physical review letters.

[33]  Runyao Duan,et al.  Semidefinite Programming Strong Converse Bounds for Classical Capacity , 2016, IEEE Transactions on Information Theory.

[34]  A. Holevo Bounds for the quantity of information transmitted by a quantum communication channel , 1973 .

[35]  Mark M. Wilde,et al.  Strong converse for the classical capacity of the pure-loss bosonic channel , 2014, Probl. Inf. Transm..

[36]  Ashish V. Thapliyal,et al.  Entanglement-Assisted Classical Capacity of Noisy Quantum Channels , 1999, Physical Review Letters.

[37]  Omar Fawzi,et al.  Algorithmic aspects of optimal channel coding , 2016, ISIT.

[38]  Masahito Hayashi,et al.  A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks , 2012, IEEE Transactions on Information Theory.

[39]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[40]  M. Horodecki,et al.  Properties of quantum nonsignaling boxes , 2006 .

[41]  Masahito Hayashi,et al.  Information Spectrum Approach to Second-Order Coding Rate in Channel Coding , 2008, IEEE Transactions on Information Theory.

[42]  R. Renner,et al.  The Quantum Reverse Shannon Theorem Based on One-Shot Information Theory , 2009, 0912.3805.

[43]  G. D’Ariano,et al.  Transforming quantum operations: Quantum supermaps , 2008, 0804.0180.

[44]  V. Giovannetti,et al.  Information-capacity description of spin-chain correlations , 2004, quant-ph/0405110.

[45]  Runyao Duan,et al.  Indistinguishability of bipartite states by positive-partial-transpose operations in the many-copy scenario , 2017, 1702.00231.

[46]  Mark M. Wilde,et al.  Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy , 2013, Communications in Mathematical Physics.