Nanocarriers for the targeted treatment of ovarian cancers.

[1]  A. McConnachie,et al.  External validation of anti-Müllerian hormone based prediction of live birth in assisted conception , 2013, Journal of Ovarian Research.

[2]  A. Oza,et al.  Biologic rationale and clinical activity of mTOR inhibitors in gynecological cancer. , 2012, Cancer treatment reviews.

[3]  S. Kaye,et al.  Gynecological cancer: First-line bevacizumab for ovarian cancer—new standard of care? , 2012, Nature Reviews Clinical Oncology.

[4]  R. Bunte,et al.  Potent therapeutic activity of folate receptor-targeted liposomal carboplatin in the localized treatment of intraperitoneally grown human ovarian tumor xenograft , 2012, International journal of nanomedicine.

[5]  Ie-Ming Shih,et al.  Ovarian Cancer is an Imported Disease: Fact or Fiction? , 2012, Current Obstetrics and Gynecology Reports.

[6]  Jacobus Pfisterer,et al.  A phase 3 trial of bevacizumab in ovarian cancer. , 2011, The New England journal of medicine.

[7]  Y. Yen,et al.  Ovarian Cancer: Opportunity for Targeted Therapy , 2011, Journal of oncology.

[8]  N. Katsumata Dose-dense therapy is of benefit in primary treatment of ovarian cancer? In favor. , 2011, Annals of oncology : official journal of the European Society for Medical Oncology.

[9]  Ronald C. Chen,et al.  Folate-targeted nanoparticle delivery of chemo- and radiotherapeutics for the treatment of ovarian cancer peritoneal metastasis. , 2011, Biomaterials.

[10]  John W. Park,et al.  In vitro evaluation and biodistribution of HER2-targeted liposomes loaded with an 125I-labelled DNA-intercalator , 2011, Journal of drug targeting.

[11]  D. Morris,et al.  Utility of Vascular Endothelial Growth Factor Inhibitors in the Treatment of Ovarian Cancer: From Concept to Application , 2011, Journal of oncology.

[12]  E. Vasheghani-Farahani,et al.  Targeted delivery of doxorubicin-utilizing chitosan nanoparticles surface-functionalized with anti-Her2 trastuzumab , 2011, International journal of nanomedicine.

[13]  Samuel M. Cohen,et al.  Folate-decorated nanogels for targeted therapy of ovarian cancer. , 2011, Biomaterials.

[14]  R. Coleman,et al.  Management Strategies for Recurrent Platinum-Resistant Ovarian Cancer , 2011, Drugs.

[15]  A. Garcia‐Bennett Synthesis, toxicology and potential of ordered mesoporous materials in nanomedicine. , 2011, Nanomedicine.

[16]  M. Shahin,et al.  A phase II evaluation of nanoparticle, albumin-bound (nab) paclitaxel in the treatment of recurrent or persistent platinum-resistant ovarian, fallopian tube, or primary peritoneal cancer: a Gynecologic Oncology Group study. , 2011, Gynecologic oncology.

[17]  C. Garrido,et al.  Targeting cancer with peptide aptamers , 2011, Oncotarget.

[18]  G. Rustin,et al.  The role of NKTR-102 in women with platinum resistant/refractory ovarian cancer and failure on pegylated liposomal doxorubicin (PLD). , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[19]  V. Galic,et al.  Paclitaxel poliglumex for ovarian cancer , 2011, Expert opinion on investigational drugs.

[20]  S. Pignata,et al.  Chemotherapy in epithelial ovarian cancer. , 2011, Cancer letters.

[21]  Hong Wu,et al.  Folate-decorated maleilated pullulan-doxorubicin conjugate for active tumor-targeted drug delivery. , 2011, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[22]  B. Fadeel,et al.  In search of the Holy Grail: Folate-targeted nanoparticles for cancer therapy. , 2011, Biochemical pharmacology.

[23]  R. Burger,et al.  Overview of anti-angiogenic agents in development for ovarian cancer. , 2011, Gynecologic oncology.

[24]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[25]  Ajay Kumar,et al.  Biotinylated PAMAM dendrimers for intracellular delivery of cisplatin to ovarian cancer: role of SMVT. , 2011, Anticancer research.

[26]  K. Neoh,et al.  Multifunctional polyglycerol-grafted Fe₃O₄@SiO₂ nanoparticles for targeting ovarian cancer cells. , 2011, Biomaterials.

[27]  Z. Duan,et al.  Development of EGFR-targeted polymer blend nanocarriers for combination paclitaxel/lonidamine delivery to treat multi-drug resistance in human breast and ovarian tumor cells. , 2011, Molecular pharmaceutics.

[28]  Mark E. Davis,et al.  Clinical Developments in Nanotechnology for Cancer Therapy , 2011, Pharmaceutical Research.

[29]  Y. Gong,et al.  Active Targeting Behaviors of Biotinylated Pluronic/Poly(Lactic Acid) Nanoparticles In Vitro through Three-Step Biotin–Avidin Interaction , 2011, Journal of biomaterials science. Polymer edition.

[30]  Véronique Préat,et al.  To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[31]  Yong-Eun Koo Lee,et al.  F3-targeted cisplatin-hydrogel nanoparticles as an effective therapeutic that targets both murine and human ovarian tumor endothelial cells in vivo. , 2010, Cancer research.

[32]  P Couvreur,et al.  Cyclodextrins for drug delivery , 2010, Journal of drug targeting.

[33]  E. Finot,et al.  From nanotechnology to nanomedicine: applications to cancer research. , 2010, Current molecular medicine.

[34]  Richard G. Moore,et al.  Current clinical use of biomarkers for epithelial ovarian cancer , 2010, Current opinion in oncology.

[35]  Jingqing Zhang,et al.  Preparation, characterization, and in vivo evaluation of mitoxantrone-loaded, folate-conjugated albumin nanoparticles , 2010, Archives of pharmacal research.

[36]  B. Zhang,et al.  Amphiphilic curcumin conjugate-forming nanoparticles as anticancer prodrug and drug carriers: in vitro and in vivo effects. , 2010, Nanomedicine.

[37]  Gert Storm,et al.  Polymeric Micelles in Anticancer Therapy: Targeting, Imaging and Triggered Release , 2010, Pharmaceutical Research.

[38]  M. Jaggi,et al.  Scope of nanotechnology in ovarian cancer therapeutics , 2010, Journal of ovarian research.

[39]  P. Low,et al.  Folate-targeted therapies for cancer. , 2010, Journal of medicinal chemistry.

[40]  V. Gebski,et al.  Pegylated liposomal Doxorubicin and Carboplatin compared with Paclitaxel and Carboplatin for patients with platinum-sensitive ovarian cancer in late relapse. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[41]  Norbert Maurer,et al.  Development of a weak-base docetaxel derivative that can be loaded into lipid nanoparticles. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[42]  R. Gurny,et al.  Benefit of anti-HER2-coated paclitaxel-loaded immuno-nanoparticles in the treatment of disseminated ovarian cancer: Therapeutic efficacy and biodistribution in mice. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[43]  E. Giralt,et al.  Building Cell Selectivity into CPP-Mediated Strategies , 2010, Pharmaceuticals.

[44]  A. Sood,et al.  Collateral damage: toxic effects of targeted antiangiogenic therapies in ovarian cancer. , 2010, The Lancet. Oncology.

[45]  Martin Koch,et al.  Overcoming cisplatin resistance of ovarian cancer cells by targeted liposomes in vitro. , 2010, International journal of pharmaceutics.

[46]  É. Boisselier,et al.  Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. , 2010, Chemical reviews.

[47]  Mark E. Davis,et al.  Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles , 2010, Nature.

[48]  M. Vicent,et al.  Do HPMA copolymer conjugates have a future as clinically useful nanomedicines? A critical overview of current status and future opportunities. , 2010, Advanced drug delivery reviews.

[49]  T. Lammers Improving the efficacy of combined modality anticancer therapy using HPMA copolymer-based nanomedicine formulations. , 2010, Advanced drug delivery reviews.

[50]  S. Gong,et al.  Tumor-targeting, pH-responsive, and stable unimolecular micelles as drug nanocarriers for targeted cancer therapy. , 2010, Bioconjugate chemistry.

[51]  J. Kopeček,et al.  HPMA copolymers: origins, early developments, present, and future. , 2010, Advanced drug delivery reviews.

[52]  Liangfang Zhang,et al.  Polymer--cisplatin conjugate nanoparticles for acid-responsive drug delivery. , 2010, ACS nano.

[53]  M. Yokoyama Polymeric micelles as a new drug carrier system and their required considerations for clinical trials , 2010, Expert opinion on drug delivery.

[54]  W. H. Blackburn,et al.  Chemosensitization of cancer cells by siRNA using targeted nanogel delivery , 2010, BMC Cancer.

[55]  M. Babaei,et al.  Effect of liposome size on peritoneal retention and organ distribution after intraperitoneal injection in mice. , 2010, International journal of pharmaceutics.

[56]  D. Nowotnik,et al.  ProLindac (AP5346): a review of the development of an HPMA DACH platinum Polymer Therapeutic. , 2009, Advanced drug delivery reviews.

[57]  Chenjie Xu,et al.  FePt nanoparticles as an Fe reservoir for controlled Fe release and tumor inhibition. , 2009, Journal of the American Chemical Society.

[58]  T. Jobo,et al.  Dose-dense paclitaxel once a week in combination with carboplatin every 3 weeks for advanced ovarian cancer: a phase 3, open-label, randomised controlled trial , 2009, The Lancet.

[59]  R. Gurny,et al.  Nanomedicines for active targeting: physico-chemical characterization of paclitaxel-loaded anti-HER2 immunonanoparticles and in vitro functional studies on target cells. , 2009, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[60]  A. Fader,et al.  Abraxane for the Treatment of Gynecologic Cancer Patients With Severe Hypersensitivity Reactions to Paclitaxel , 2009, International Journal of Gynecologic Cancer.

[61]  Liangfang Zhang,et al.  Therapeutic nanoparticles to combat cancer drug resistance. , 2009, Current drug metabolism.

[62]  Jun Chen,et al.  Follicle-stimulating hormone peptide can facilitate paclitaxel nanoparticles to target ovarian carcinoma in vivo. , 2009, Cancer research.

[63]  M. Prabaharan,et al.  Thermosensitive micelles based on folate-conjugated poly(N-vinylcaprolactam)-block-poly(ethylene glycol) for tumor-targeted drug delivery. , 2009, Macromolecular bioscience.

[64]  R. Bristow Advanced cytoreductive surgery in gynecologic oncology. , 2009, Gynecologic oncology.

[65]  A. Kabanov,et al.  Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. , 2009, Angewandte Chemie.

[66]  Eun Seong Lee,et al.  In vivo evaluation of doxorubicin-loaded polymeric micelles targeting folate receptors and early endosomal pH in drug-resistant ovarian cancer. , 2009, Molecular pharmaceutics.

[67]  Zhen-bo Zhang,et al.  Overexpression of follicle-stimulating hormone receptor facilitates the development of ovarian epithelial cancer. , 2009, Cancer letters.

[68]  P. Couvreur,et al.  Nanocarriers’ entry into the cell: relevance to drug delivery , 2009, Cellular and Molecular Life Sciences.

[69]  Y. Zhan,et al.  Degradable poly(beta-amino ester) nanoparticles for cancer cytoplasmic drug delivery. , 2009, Nanomedicine : nanotechnology, biology, and medicine.

[70]  Yang Yang,et al.  A novel mixed micelle gel with thermo-sensitive property for the local delivery of docetaxel. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[71]  W. H. Blackburn,et al.  Peptide-functionalized nanogels for targeted siRNA delivery. , 2009, Bioconjugate chemistry.

[72]  L. Asmar,et al.  Phase II evaluation of nanoparticle albumin-bound paclitaxel in platinum-sensitive patients with recurrent ovarian, peritoneal, or fallopian tube cancer. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[73]  Masahiro Inoue,et al.  Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. , 2009, Cancer cell.

[74]  Timothy A. Yap,et al.  Beyond chemotherapy: targeted therapies in ovarian cancer , 2009, Nature Reviews Cancer.

[75]  R. Gurny,et al.  Benefits of nanoencapsulation for the hypercin-mediated photodetection of ovarian micrometastases. , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[76]  J. Kreuter,et al.  Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[77]  S. Mousa,et al.  Nanoparticles and cancer therapy: A concise review with emphasis on dendrimers , 2009, International journal of nanomedicine.

[78]  Hui Zhao,et al.  RGD-based strategies for improving antitumor activity of paclitaxel-loaded liposomes in nude mice xenografted with human ovarian cancer , 2009, Journal of drug targeting.

[79]  Felix Kratz,et al.  Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[80]  A. Secord,et al.  A phase II trial of paclitaxel poliglumex in recurrent or persistent ovarian or primary peritoneal cancer (EOC): a Gynecologic Oncology Group Study. , 2008, Gynecologic oncology.

[81]  André Pèlegrin,et al.  Cell-penetrating and cell-targeting peptides in drug delivery. , 2008, Biochimica et biophysica acta.

[82]  R. Drapkin,et al.  New insights into the pathogenesis of serous ovarian cancer and its clinical impact. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[83]  Eun Seong Lee,et al.  Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. , 2008, Small.

[84]  T. Park,et al.  LHRH receptor-mediated delivery of siRNA using polyelectrolyte complex micelles self-assembled from siRNA-PEG-LHRH conjugate and PEI. , 2008, Bioconjugate chemistry.

[85]  Zhirong Zhang,et al.  Ovarian Tumor Targeting of Docetaxel-Loaded Liposomes Mediated by Luteinizing Hormone-Releasing Hormone Analogues , 2008, Arzneimittel-Forschung (Drug Research).

[86]  M. Fishman,et al.  Pharmacokinetic/Pharmacodynamic Modeling and Simulation of Neutropenia during Phase I Development of Liposome-Entrapped Paclitaxel , 2008, Clinical Cancer Research.

[87]  M. Morgan,et al.  Paclitaxel poliglumex and carboplatin as first-line therapy in ovarian, peritoneal or fallopian tube cancer: a phase I and feasibility trial of the Gynecologic Oncology Group. , 2008, Gynecologic oncology.

[88]  Ick Chan Kwon,et al.  Super pH-sensitive multifunctional polymeric micelle for tumor pH(e) specific TAT exposure and multidrug resistance. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[89]  M. Piccart-Gebhart,et al.  New therapies for ovarian cancer: cytotoxics and molecularly targeted agents. , 2008, Critical reviews in oncology/hematology.

[90]  Xian‐Zheng Zhang,et al.  Functionalized amphiphilic hyperbranched polymers for targeted drug delivery. , 2008, Biomacromolecules.

[91]  Patrick Soon-Shiong,et al.  Protein nanoparticles as drug carriers in clinical medicine. , 2008, Advanced drug delivery reviews.

[92]  Ie-Ming Shih,et al.  Pathogenesis of Ovarian Cancer: Lessons From Morphology and Molecular Biology and Their Clinical Implications , 2008, International journal of gynecological pathology : official journal of the International Society of Gynecological Pathologists.

[93]  Liz Y. Han,et al.  Effect of interleukin-8 gene silencing with liposome-encapsulated small interfering RNA on ovarian cancer cell growth. , 2008, Journal of the National Cancer Institute.

[94]  S. Nie,et al.  Therapeutic Nanoparticles for Drug Delivery in Cancer , 2008, Clinical Cancer Research.

[95]  D. Katsaros,et al.  Phase III trial of gemcitabine compared with pegylated liposomal doxorubicin in progressive or recurrent ovarian cancer. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[96]  K. Edwards,et al.  Use of a passive equilibration methodology to encapsulate cisplatin into preformed thermosensitive liposomes. , 2008, International journal of pharmaceutics.

[97]  L. McManus,et al.  Imaging of 186Re-liposome therapy in ovarian cancer xenograft model of peritoneal carcinomatosis , 2008, Journal of drug targeting.

[98]  Michael W Sill,et al.  Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: a Gynecologic Oncology Group Study. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[99]  J. Benoit,et al.  Design of targeted lipid nanocapsules by conjugation of whole antibodies and antibody Fab' fragments. , 2007, Biomaterials.

[100]  M. Markman Intraperitoneal chemotherapy as primary treatment of advanced ovarian cancer: efficacy, toxicity, and future directions. , 2007, Reviews on recent clinical trials.

[101]  P. Choyke,et al.  Preparation and preliminary evaluation of a biotin-targeted, lectin-targeted dendrimer-based probe for dual-modality magnetic resonance and fluorescence imaging. , 2007, Bioconjugate chemistry.

[102]  R. Ladner Antibodies cut down to size , 2007, Nature Biotechnology.

[103]  M. Biffoni,et al.  Transferrin receptor 2 is frequently expressed in human cancer cell lines. , 2007, Blood cells, molecules & diseases.

[104]  C. Zavaleta,et al.  Use of avidin/biotin-liposome system for enhanced peritoneal drug delivery in an ovarian cancer model. , 2007, International journal of pharmaceutics.

[105]  L. Hartmann,et al.  Current management strategies for ovarian cancer. , 2007, Mayo Clinic proceedings.

[106]  Mark E. Davis,et al.  Inaugural Article: Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA , 2007 .

[107]  Mansoor M. Amiji,et al.  Poly(ethylene glycol)-modified Nanocarriers for Tumor-targeted and Intracellular Delivery , 2007, Pharmaceutical Research.

[108]  R. Gurny,et al.  Differential tumor cell targeting of anti-HER2 (Herceptin) and anti-CD20 (Mabthera) coupled nanoparticles. , 2007, International journal of pharmaceutics.

[109]  Dipankar Das,et al.  Design of a bifunctional fusion protein for ovarian cancer drug delivery: single-chain anti-CA125 core-streptavidin fusion protein. , 2007, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[110]  K. Letchford,et al.  A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. , 2007, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[111]  Mark E. Davis,et al.  Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles. , 2007, Bioconjugate chemistry.

[112]  M. Campone,et al.  Phase I dose-escalation study of a novel antitumor agent, SR271425, administered intravenously in split doses (d1–d2–d3) in patients with refractory solid tumors , 2007, Cancer Chemotherapy and Pharmacology.

[113]  Dominique Duchêne,et al.  Cyclodextrins and their pharmaceutical applications. , 2007, International journal of pharmaceutics.

[114]  R. Gurny,et al.  Hypericin-loaded nanoparticles for the photodynamic treatment of ovarian cancer. , 2006, International journal of pharmaceutics.

[115]  E. W. Meijer,et al.  Dendrimeric poly(propylene-imines) as effective delivery agents for DNAzymes: dendrimer synthesis, stability and oligonucleotide complexation. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[116]  T. Daniels,et al.  The transferrin receptor part I: Biology and targeting with cytotoxic antibodies for the treatment of cancer. , 2006, Clinical immunology.

[117]  Gustavo Helguera,et al.  The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. , 2006, Clinical immunology.

[118]  N. Vorsa,et al.  Dendrimer versus linear conjugate: Influence of polymeric architecture on the delivery and anticancer effect of paclitaxel. , 2006, Bioconjugate chemistry.

[119]  F. Dosio,et al.  Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. , 2006 .

[120]  Ruth Duncan,et al.  Polymer conjugates as anticancer nanomedicines , 2006, Nature Reviews Cancer.

[121]  Yang Wang,et al.  In vitro and in vivo intracellular liposomal delivery of antisense oligonucleotides and anticancer drug. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[122]  Liz Y. Han,et al.  Focal Adhesion Kinase Targeting Using In vivo Short Interfering RNA Delivery in Neutral Liposomes for Ovarian Carcinoma Therapy , 2006, Clinical Cancer Research.

[123]  W. Cliby,et al.  Importance of surgical aggressiveness in advanced ovarian cancer. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[124]  Joan L. Walker,et al.  Intraperitoneal chemotherapy of ovarian cancer: a review, with a focus on practical aspects of treatment. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[125]  Umesh Gupta,et al.  Dendrimers: novel polymeric nanoarchitectures for solubility enhancement. , 2006, Biomacromolecules.

[126]  R. Duncan,et al.  Dendrimer biocompatibility and toxicity. , 2005, Advanced drug delivery reviews.

[127]  P. Escobar,et al.  Docetaxel in ovarian cancer , 2005, Expert opinion on pharmacotherapy.

[128]  J. Nesland,et al.  The clinical significance of EphA2 and Ephrin A-1 in epithelial ovarian carcinomas. , 2005, Gynecologic oncology.

[129]  C. Allen,et al.  Methoxy poly(ethylene glycol)-block-poly(delta-valerolactone) copolymer micelles for formulation of hydrophobic drugs. , 2005, Biomacromolecules.

[130]  Y. Barenholz,et al.  Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer. , 2005, Chemistry and physics of lipids.

[131]  Christopher Poole,et al.  Randomized trial of two intravenous schedules of the topoisomerase I inhibitor liposomal lurtotecan in women with relapsed epithelial ovarian cancer: a trial of the national cancer institute of Canada clinical trials group. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[132]  V. Torchilin Recent advances with liposomes as pharmaceutical carriers , 2005, Nature Reviews Drug Discovery.

[133]  Xiangrong Song,et al.  Uptake of folate-conjugated albumin nanoparticles to the SKOV3 cells. , 2004, International journal of pharmaceutics.

[134]  Alan Gordon,et al.  Phase III randomized trial of docetaxel-carboplatin versus paclitaxel-carboplatin as first-line chemotherapy for ovarian carcinoma. , 2004, Journal of the National Cancer Institute.

[135]  P. Leung,et al.  Overexpression of follicle-stimulating hormone receptor activates oncogenic pathways in preneoplastic ovarian surface epithelial cells. , 2004, The Journal of clinical endocrinology and metabolism.

[136]  P. Low,et al.  Folate-conjugated liposomes preferentially target macrophages associated with ovarian carcinoma. , 2004, Cancer letters.

[137]  A. Thomas,et al.  Les liposomes : description, fabrication et applications , 2004 .

[138]  J. Leroux,et al.  Poly(N-vinylpyrrolidone)-block-poly(D,L-lactide) as a new polymeric solubilizer for hydrophobic anticancer drugs: in vitro and in vivo evaluation. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[139]  G. G. Miller,et al.  Preliminary Results of Nanopharmaceuticals Used in the Radioimmunotherapy of Ovarian Cancer , 2004, 2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04).

[140]  A. Sood,et al.  EphA2 Expression Is Associated with Aggressive Features in Ovarian Carcinoma , 2004, Clinical Cancer Research.

[141]  E. D. Valle,et al.  Cyclodextrins and their uses: a review , 2004 .

[142]  Samuel Zalipsky,et al.  Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. , 2004, Advanced drug delivery reviews.

[143]  U. Matulonis,et al.  A phase II study of liposomal lurtotecan (OSI-211) in patients with topotecan resistant ovarian cancer. , 2004, Gynecologic oncology.

[144]  Erkki Ruoslahti,et al.  Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels , 2003, The Journal of cell biology.

[145]  Mark E. Davis,et al.  Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery. , 2003, Bioconjugate chemistry.

[146]  Shu Chien,et al.  Chemotherapeutic engineering: Application and further development of chemical engineering principles for chemotherapy of cancer and other diseases , 2003 .

[147]  You Han Bae,et al.  Polymeric micelle for tumor pH and folate-mediated targeting. , 2003, Journal of controlled release : official journal of the Controlled Release Society.

[148]  J. Kopeček,et al.  Erratum: HPMA copolymer-anticancer drug OV-TL-TL16 antibody conjugates. 1. Influence of the method of synthesis on the biding affinity to OVCAR-3 ovarian carcinoma cells in vitro (Journal of Drug Targeting (1996) vol. 3 (357-373)) , 2003 .

[149]  Hyun Joon Shin,et al.  Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization. , 2003, Journal of controlled release : official journal of the Controlled Release Society.

[150]  R. Ozols Maintenance therapy in advanced ovarian cancer: progression-free survival and clinical benefit. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[151]  B. Fallone,et al.  Dosimetric model for intraperitoneal targeted liposomal radioimmunotherapy of ovarian cancer micrometastases. , 2003, Physics in medicine and biology.

[152]  C. Runowicz,et al.  Current Therapies in Ovarian Cancer , 2003, Cancer investigation.

[153]  W. Oyen,et al.  Comparison of a monomeric and dimeric radiolabeled RGD-peptide for tumor targeting. , 2002, Cancer biotherapy & radiopharmaceuticals.

[154]  P. Wils,et al.  Folate-targeted, cationic liposome-mediated gene transfer into disseminated peritoneal tumors , 2002, Gene Therapy.

[155]  D. Armstrong Relapsed ovarian cancer: challenges and management strategies for a chronic disease. , 2002, The oncologist.

[156]  L. Medina,et al.  A Novel Approach for the Increased Delivery of Pharmaceutical Agents to Peritoneum and Associated Lymph Nodes , 2002, Journal of Pharmacology and Experimental Therapeutics.

[157]  T. Minko,et al.  Enhancing the anticancer efficacy of camptothecin using biotinylated poly(ethyleneglycol) conjugates in sensitive and multidrug-resistant human ovarian carcinoma cells , 2002, Cancer Chemotherapy and Pharmacology.

[158]  J. Benoit,et al.  A Novel Phase Inversion-Based Process for the Preparation of Lipid Nanocarriers , 2002, Pharmaceutical Research.

[159]  S. Gupta,et al.  A three-step strategy for targeting drug carriers to human ovarian carcinoma cells in vitro. , 2002, Journal of biotechnology.

[160]  D. Aggarwal,et al.  Paclitaxel and its formulations. , 2002, International journal of pharmaceutics.

[161]  D. Kerr,et al.  Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin. , 2002, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[162]  J. Hubbell,et al.  Poly(ethylene glycol) block copolymers. , 2002, Journal of biotechnology.

[163]  W. Luo,et al.  Rapid method for the determination of total 5-methyltetrahydrofolate in blood by liquid chromatography with fluorescence detection. , 2002 .

[164]  Alexander V Kabanov,et al.  Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. , 2002, Advanced drug delivery reviews.

[165]  M. Gore,et al.  Caelyx: phase II studies in ovarian cancer. , 2001, European journal of cancer.

[166]  K Togashi,et al.  Tumor targeting and imaging of intraperitoneal tumors by use of antisense oligo-DNA complexed with dendrimers and/or avidin in mice. , 2001, Clinical cancer research : an official journal of the American Association for Cancer Research.

[167]  S. Mok,et al.  Expression of gonadotropin receptor and growth responses to key reproductive hormones in normal and malignant human ovarian surface epithelial cells. , 2001, Cancer research.

[168]  S M Moghimi,et al.  Long-circulating and target-specific nanoparticles: theory to practice. , 2001, Pharmacological reviews.

[169]  M. Brechbiel,et al.  Specific targeting of folate–dendrimer MRI contrast agents to the high affinity folate receptor expressed in ovarian tumor xenografts , 2001, Magnetic Resonance Materials in Physics, Biology and Medicine.

[170]  K. Mäder,et al.  Solid lipid nanoparticles: production, characterization and applications. , 2001, Advanced drug delivery reviews.

[171]  M. Skinner,et al.  Expression and actions of both the follicle stimulating hormone receptor and the luteinizing hormone receptor in normal ovarian surface epithelium and ovarian cancer , 2001, Molecular and Cellular Endocrinology.

[172]  J. Lieto,et al.  [Methods of obtaining and formation mechanisms of polymer nanoparticles]. , 2000, Journal de pharmacie de Belgique.

[173]  D. Baccanari,et al.  Antitumor efficacy, pharmacokinetics, and biodistribution of NX 211: a low-clearance liposomal formulation of lurtotecan. , 2000, Clinical cancer research : an official journal of the American Association for Cancer Research.

[174]  D. Tzemach,et al.  Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. , 2000, Clinical cancer research : an official journal of the American Association for Cancer Research.

[175]  H. Maeda,et al.  Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[176]  F. Dosio,et al.  Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing water-soluble prodrugs of paclitaxel. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[177]  F. Dosio,et al.  Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[178]  A. Kabanov,et al.  Polyion complex micelles with protein-modified corona for receptor-mediated delivery of oligonucleotides into cells. , 1999, Bioconjugate chemistry.

[179]  D. Tzemach,et al.  Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: in vitro studies. , 1999, Bioconjugate chemistry.

[180]  Y. Barenholz,et al.  Hydration of polyethylene glycol-grafted liposomes. , 1998, Biophysical journal.

[181]  H. Sakahara,et al.  Avidin targeting of intraperitoneal tumor xenografts. , 1998, Journal of the National Cancer Institute.

[182]  F. Sharom The P-Glycoprotein Efflux Pump: How Does it Transport Drugs? , 1997, The Journal of Membrane Biology.

[183]  Amarnath Sharma,et al.  Liposomes in drug delivery: Progress and limitations , 1997 .

[184]  J. Israelachvili,et al.  Direct Measurement of a Tethered Ligand-Receptor Interaction Potential , 1997, Science.

[185]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings , 1997 .

[186]  D. Cruickshank,et al.  Mature results of a randomized trial of two doses of cisplatin for the treatment of ovarian cancer. Scottish Gynecology Cancer Trials Group. , 1996, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[187]  T. Allen,et al.  Insertion of poly(ethylene glycol) derivatized phospholipid into pre‐formed liposomes results in prolonged in vivo circulation time , 1996, FEBS letters.

[188]  E. Partridge,et al.  Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer , 1996, The New England journal of medicine.

[189]  R. Müller,et al.  The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. , 1995, Advanced drug delivery reviews.

[190]  H. Junginger,et al.  Interactions between liposomes and human stratum corneum in vitro: freeze fracture electron microscopical visualization and small angle X‐ray scattering studies , 1995, The British journal of dermatology.

[191]  Y. Nagasaki,et al.  Heterobifunctional poly(ethylene oxide): synthesis of alpha-methoxy-omega-amino and alpha-hydroxy-omega-amino PEOs with the same molecular weights. , 1995, Bioconjugate chemistry.

[192]  Allan G. A. Coombes,et al.  Surface Modification of Poly(lactide-co-glycolide) Nanospheres by Biodegradable Poly(lactide)-Poly(ethylene glycol) Copolymers , 1994, Pharmaceutical Research.

[193]  R. Perez-soler,et al.  Cell death and DNA fragmentation induced by liposomal platinum(II) complex, L-NDDP in A2780 and A2780/PDD cells. , 1994, Anticancer research.

[194]  E. Mayhew,et al.  Therapy of human ovarian carcinoma xenografts using doxorubicin encapsulated in sterically stabilized liposomes , 1993, Cancer.

[195]  S. Orsulic,et al.  Ovarian Cancer , 1993, British Journal of Cancer.

[196]  S. Daoud,et al.  In vitro interaction of liposomal valinomycin and platinum analogs: cytotoxic and cytokinetic effects , 1993, Anti-cancer drugs.

[197]  P. Couvreur,et al.  Polyalkylcyanoacrylate Nanoparticles as Polymeric Carriers for Antisense Oligonucleotides , 1992, Pharmaceutical Research.

[198]  M. Markman Current status of intracavitary chemotherapy. , 1987, Oncology.

[199]  R. Müller,et al.  The organ distribution and circulation time of intravenously injected colloidal carriers sterically stabilized with a block copolymer--poloxamine 908. , 1987, Life sciences.

[200]  P. Wilkinson,et al.  Ovarian cancer antigen CA125: a prospective clinical assessment of its role as a tumour marker. , 1984, British Journal of Cancer.

[201]  R. Bast,et al.  Reactivity of a monoclonal antibody with human ovarian carcinoma. , 1981, The Journal of clinical investigation.

[202]  P. Couvreur,et al.  Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties , 1979, The Journal of pharmacy and pharmacology.

[203]  A. Bangham,et al.  Diffusion of univalent ions across the lamellae of swollen phospholipids. , 1965, Journal of molecular biology.

[204]  A. Jemal,et al.  Cancer statistics, 2012 , 2012, CA: a cancer journal for clinicians.

[205]  H. Shmeeda,et al.  Liposomes and Polymers in Folate-Targeted Cancer Therapeutics , 2011 .

[206]  Carolina Gutierrez,et al.  HER2: biology, detection, and clinical implications. , 2011, Archives of pathology & laboratory medicine.

[207]  G. Scambia,et al.  Should laparoscopy be included in the work-up of advanced ovarian cancer patients attempting interval debulking surgery? , 2010, Gynecologic oncology.

[208]  G. Garg,et al.  NANOSPHERES: A NOVEL APPROACH FOR TARGETED DRUG DELIVERY SYSTEM , 2010 .

[209]  A. Elaissari,et al.  Nanotechnology olymer-based nanocapsules for drug delivery , 2009 .

[210]  Robert Blumenthal,et al.  Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. , 2009, Critical reviews in therapeutic drug carrier systems.

[211]  C. Allen,et al.  Nano-sized Advanced Delivery Systems as Parenteral Formulation Strategies for Hydrophobic Anti-cancer Drugs , 2009 .

[212]  A. Zahr,et al.  Nanotechnology for Cancer Chemotherapy , 2009 .

[213]  T. Xu,et al.  Dendrimers as drug carriers: applications in different routes of drug administration. , 2008, Journal of pharmaceutical sciences.

[214]  T. Xu,et al.  Pharmaceutical applications of dendrimers: promising nanocarriers for drug delivery. , 2008, Frontiers in bioscience : a journal and virtual library.

[215]  V. Soldatenkov,et al.  Multifunctional Nanotherapeutics for Cancer , 2008 .

[216]  K. Roby,et al.  Syngeneic mouse model of epithelial ovarian cancer: effects of nanoparticulate paclitaxel, Nanotax. , 2008, Advances in experimental medicine and biology.

[217]  K. Jain,et al.  Drug delivery systems - an overview. , 2008, Methods in molecular biology.

[218]  R. Gurny,et al.  Biodegradable nanoparticles for direct or two-step tumor immunotargeting. , 2006, Bioconjugate chemistry.

[219]  K. Roby,et al.  Paclitaxel nanoparticles: Production using compressed CO2 as antisolvent : Characterization and animal model studies , 2006 .

[220]  J. Zhang,et al.  Development and characterization of a novel Cremophor EL free liposome-based paclitaxel (LEP-ETU) formulation. , 2005, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[221]  M. Yokoyama,et al.  Drug targeting with nano-sized carrier systems , 2005, Journal of Artificial Organs.

[222]  N. Mullah,et al.  Preparation of poly(ethylene glycol)-grafted liposomes with ligands at the extremities of polymer chains. , 2004, Methods in enzymology.

[223]  Yechezkel Barenholz,et al.  Pharmacokinetics of Pegylated Liposomal Doxorubicin , 2003, Clinical pharmacokinetics.

[224]  Jindrich Kopecek,et al.  Tat-conjugated synthetic macromolecules facilitate cytoplasmic drug delivery to human ovarian carcinoma cells. , 2003, Bioconjugate chemistry.

[225]  Wenhong Lu,et al.  Rapid method for the determination of total 5-methyltetrahydrofolate in blood by liquid chromatography with fluorescence detection. , 2002, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[226]  E C Wiener,et al.  Development of a tumor-targeting MR contrast agent using the high-affinity folate receptor: work in progress. , 2000, Investigative radiology.

[227]  J. Kopeček,et al.  HPMA copolymer-anticancer drug-OV-TL16 antibody conjugates. 1. influence of the method of synthesis on the binding affinity to OVCAR-3 ovarian carcinoma cells in vitro. , 1996, Journal of drug targeting.

[228]  H. Hosick,et al.  Establishment and characterization of a human ovarian serous cystadenocarcinoma cell line that produces the tumor markers CA-125 and tissue polypeptide antigen. , 1990, Oncology.

[229]  H. Ngan,et al.  A randomized study of high-dose versus low-dose cis-platinum combined with cyclophosphamide in the treatment of advanced ovarian cancer. Hong Kong Ovarian Carcinoma Study Group. , 1989, Chemotherapy.

[230]  H. Ringsdorf Structure and properties of pharmacologically active polymers , 1975 .

[231]  A. Chen,et al.  Chinese Anti鄄 Cancer a Ssociation , 2022 .