A Geometric Treatment of Implicit Differential-Algebraic Equations

Abstract A differential-geometric approach for proving the existence and uniqueness of implicit differential-algebraic equations is presented. It provides for a significant improvement of an earlier theory developed by the authors as well as for a completely intrinsic definition of the index of such problems. The differential-algebraic equation is transformed into an explicit ordinary differential equation by a reduction process that can be abstractly defined for specific submanifolds of tangent bundles here called reducible π-submanifolds. Local existence and uniqueness results for differential-algebraic equations then follow directly from the final stage of this reduction by means of an application of the standard theory of ordinary differential equations.