A NATURAL DEDUCTION SYSTEM FOR ORTHOMODULAR LOGIC

Orthomodular logic is a fragment of quantum logic in the sense of Birkhoff and von Neumann. Orthomodular logic is shown to be a nonlinear noncommutative logic. Sequents are given a physically motivated semantics that is consistent with exactly one semantics for propositional formulas that use negation, conjunction, and implication. In particular, implication must be interpreted as the Sasaki arrow, which satisfies the deduction theorem in this logic. As an application, this deductive system is extended to two systems of predicate logic: the first is sound for Takeuti’s quantum set theory, and the second is sound for a variant of Weaver’s quantum logic.

[1]  Johanna Weiss Studies In The Foundations Of Quantum Mechanics , 2016 .

[2]  John L. Bell,et al.  A New Approach to Quantum Logic , 1986, The British Journal for the Philosophy of Science.

[3]  S. Bose Equations , 2021, Engineering Design and Optimization of Thermofluid Systems.

[4]  Tobias Fritz,et al.  Quantum logic is undecidable , 2016, Archive for Mathematical Logic.

[5]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[6]  Gary M. Hardegree The conditional in quantum logic , 1974, Synthese.

[7]  David E. Roberson,et al.  Quantum homomorphisms , 2016, J. Comb. Theory, Ser. B.

[8]  Gary M. Hardegree Material implication in orthomodular (and Boolean) lattices , 1981, Notre Dame J. Formal Log..

[9]  H. Dishkant,et al.  Logic of Quantum Mechanics , 1976 .

[10]  M. Pavicic,et al.  Non-Orthomodular Models for Both Standard Quantum Logic and Standard Classical Logic: Repercussions for Quantum Computers , 1999 .

[11]  J. Dunn Quantum Mathematics , 1980, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association.

[12]  Gianpiero Cattaneo,et al.  Quantum logic and nonclassical logics , 2009 .

[13]  Masanao Ozawa,et al.  Quantum Set Theory Extending the Standard Probabilistic Interpretation of Quantum Theory , 2015, New Generation Computing.

[14]  P. Mittelstaedt Quantenlogische Interpretation orthokomplementärer quasimodularer Verbände , 1970 .

[15]  Edwin Marsden,et al.  The commutator and solvability in a generalized orthomodular lattice. , 1970 .

[16]  John Harding,et al.  Completions of Ordered Algebraic Structures: A Survey , 2008, Interval / Probabilistic Uncertainty and Non-Classical Logics.

[17]  P. Porcelli,et al.  On rings of operators , 1967 .

[18]  Gaisi Takeuti,et al.  Quantum Set Theory , 1981 .

[19]  Usa Sasaki Orthocomplemented Lattices Satisfying the Exchange Axiom , 1954 .

[20]  S. Woronowicz,et al.  Quantum deformation of lorentz group , 1990 .

[21]  Norman D. Megill,et al.  Hilbert Lattice Equations , 2009, 0912.1461.

[22]  E. Villaseñor Introduction to Quantum Mechanics , 2008, Nature.

[23]  Richard J. Greechie A Non-Standard Quantum Logic with a Strong Set of States , 1981 .

[24]  Andre Kornell Quantum sets , 2018, 1804.00581.

[25]  G. Kuperberg,et al.  A von Neumann algebra approach to quantum metrics , 2010, 1005.0353.

[26]  J. Girard The Blind Spot: Lectures on Logic , 2011 .

[27]  Jacek Malinowski,et al.  The deduction theorem for quantum logic—some negative results , 1990, Journal of Symbolic Logic.

[28]  S. Holland,et al.  The Current Interest in Orthomodular Lattices , 1975 .

[29]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[30]  Gary M. Hardegree An axiom system for orthomodular quantum logic , 1981 .

[31]  R. Godowski VARIETIES OF ORTHOMODULAR LATTICES WITH A STRONGLY FULL SET OF STATES , 1981 .

[32]  Norman D. Megill,et al.  Kochen–Specker Sets and Generalized Orthoarguesian Equations , 2010, 1005.0016.

[33]  William Slofstra,et al.  Tsirelson’s problem and an embedding theorem for groups arising from non-local games , 2016, Journal of the American Mathematical Society.

[34]  Simone Severini,et al.  Zero-Error Communication via Quantum Channels, Noncommutative Graphs, and a Quantum Lovász Number , 2010, IEEE Transactions on Information Theory.

[35]  J. Jay Zeman,et al.  Generalized normal logic , 1978, J. Philos. Log..

[36]  J. Kustermans,et al.  Locally compact quantum groups in the von Neumann algebraic setting , 2000, math/0005219.

[37]  Robert Goldblatt,et al.  Semantic analysis of orthologic , 1974, J. Philos. Log..

[38]  Equations Holding in Hilbert Lattices , 2006 .

[39]  Masanao Ozawa Quantum set theory: Transfer Principle and De Morgan's Laws , 2021, Ann. Pure Appl. Log..

[40]  Schumacher,et al.  Noncommuting mixed states cannot be broadcast. , 1995, Physical review letters.

[42]  A. Gleason Measures on the Closed Subspaces of a Hilbert Space , 1957 .

[43]  Robert Piziak,et al.  Implication connectives in orthomodular lattices , 1975, Notre Dame J. Formal Log..

[44]  Benjamin Eva,et al.  A BRIDGE BETWEEN Q-WORLDS , 2018, The Review of Symbolic Logic.

[45]  Masanao Ozawa Transfer principle in quantum set theory , 2007, J. Symb. Log..

[46]  Mladen Pavicic,et al.  Quantum logic and quantum computation , 2008, 0812.3072.

[47]  Karl Svozil,et al.  Quantum Logic , 1998, Discrete mathematics and theoretical computer science.

[48]  Masanao Ozawa,et al.  ORTHOMODULAR-VALUED MODELS FOR QUANTUM SET THEORY , 2009, The Review of Symbolic Logic.

[49]  Satoko Titani A Completeness Theorem of Quantum Set Theory , 2009 .

[50]  Masanao Ozawa,et al.  Quantum Reality and Measurement: A Quantum Logical Approach , 2009, 0911.1147.

[51]  Mladen Pavicic,et al.  Is Quantum Logic a Logic , 2008, 0812.2698.

[52]  Ernst-Walther Stachow Quantum logical calculi and lattice structures , 1978, J. Philos. Log..

[53]  Maria Luisa Dalla Chiara,et al.  Quantum logic and physical modalities , 1977, J. Philos. Log..

[54]  David E. Roberson,et al.  Quantum and non-signalling graph isomorphisms , 2016, J. Comb. Theory B.

[55]  P. D. Finch,et al.  Quantum logic as an implication algebra , 1970, Bulletin of the Australian Mathematical Society.

[56]  Yannis Delmas-Rigoutsos A Double Deduction System for Quantum Logic Based On Natural Deduction , 1997, J. Philos. Log..

[57]  John Yen,et al.  Introduction , 2004, CACM.

[58]  R. Mayet Equational bases for some varieties of orthomodular lattices related to states , 1986 .

[59]  Hirokazu Nishimura Sequential Method in Quantum Logic , 1980, J. Symb. Log..

[60]  W. Rump Symmetric Quantum Sets and L-Algebras , 2020, International Mathematics Research Notices.

[61]  N. Weaver Quantum relations , 2010, 1005.0354.

[62]  Bas Spitters,et al.  A Topos for Algebraic Quantum Theory , 2007, 0709.4364.