A NATURAL DEDUCTION SYSTEM FOR ORTHOMODULAR LOGIC
暂无分享,去创建一个
[1] Johanna Weiss. Studies In The Foundations Of Quantum Mechanics , 2016 .
[2] John L. Bell,et al. A New Approach to Quantum Logic , 1986, The British Journal for the Philosophy of Science.
[3] S. Bose. Equations , 2021, Engineering Design and Optimization of Thermofluid Systems.
[4] Tobias Fritz,et al. Quantum logic is undecidable , 2016, Archive for Mathematical Logic.
[5] G. Gentzen. Untersuchungen über das logische Schließen. I , 1935 .
[6] Gary M. Hardegree. The conditional in quantum logic , 1974, Synthese.
[7] David E. Roberson,et al. Quantum homomorphisms , 2016, J. Comb. Theory, Ser. B.
[8] Gary M. Hardegree. Material implication in orthomodular (and Boolean) lattices , 1981, Notre Dame J. Formal Log..
[9] H. Dishkant,et al. Logic of Quantum Mechanics , 1976 .
[10] M. Pavicic,et al. Non-Orthomodular Models for Both Standard Quantum Logic and Standard Classical Logic: Repercussions for Quantum Computers , 1999 .
[11] J. Dunn. Quantum Mathematics , 1980, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association.
[12] Gianpiero Cattaneo,et al. Quantum logic and nonclassical logics , 2009 .
[13] Masanao Ozawa,et al. Quantum Set Theory Extending the Standard Probabilistic Interpretation of Quantum Theory , 2015, New Generation Computing.
[14] P. Mittelstaedt. Quantenlogische Interpretation orthokomplementärer quasimodularer Verbände , 1970 .
[15] Edwin Marsden,et al. The commutator and solvability in a generalized orthomodular lattice. , 1970 .
[16] John Harding,et al. Completions of Ordered Algebraic Structures: A Survey , 2008, Interval / Probabilistic Uncertainty and Non-Classical Logics.
[17] P. Porcelli,et al. On rings of operators , 1967 .
[18] Gaisi Takeuti,et al. Quantum Set Theory , 1981 .
[19] Usa Sasaki. Orthocomplemented Lattices Satisfying the Exchange Axiom , 1954 .
[20] S. Woronowicz,et al. Quantum deformation of lorentz group , 1990 .
[21] Norman D. Megill,et al. Hilbert Lattice Equations , 2009, 0912.1461.
[22] E. Villaseñor. Introduction to Quantum Mechanics , 2008, Nature.
[23] Richard J. Greechie. A Non-Standard Quantum Logic with a Strong Set of States , 1981 .
[24] Andre Kornell. Quantum sets , 2018, 1804.00581.
[25] G. Kuperberg,et al. A von Neumann algebra approach to quantum metrics , 2010, 1005.0353.
[26] J. Girard. The Blind Spot: Lectures on Logic , 2011 .
[27] Jacek Malinowski,et al. The deduction theorem for quantum logic—some negative results , 1990, Journal of Symbolic Logic.
[28] S. Holland,et al. The Current Interest in Orthomodular Lattices , 1975 .
[29] S. C. Kleene,et al. Introduction to Metamathematics , 1952 .
[30] Gary M. Hardegree. An axiom system for orthomodular quantum logic , 1981 .
[31] R. Godowski. VARIETIES OF ORTHOMODULAR LATTICES WITH A STRONGLY FULL SET OF STATES , 1981 .
[32] Norman D. Megill,et al. Kochen–Specker Sets and Generalized Orthoarguesian Equations , 2010, 1005.0016.
[33] William Slofstra,et al. Tsirelson’s problem and an embedding theorem for groups arising from non-local games , 2016, Journal of the American Mathematical Society.
[34] Simone Severini,et al. Zero-Error Communication via Quantum Channels, Noncommutative Graphs, and a Quantum Lovász Number , 2010, IEEE Transactions on Information Theory.
[35] J. Jay Zeman,et al. Generalized normal logic , 1978, J. Philos. Log..
[36] J. Kustermans,et al. Locally compact quantum groups in the von Neumann algebraic setting , 2000, math/0005219.
[37] Robert Goldblatt,et al. Semantic analysis of orthologic , 1974, J. Philos. Log..
[38] Equations Holding in Hilbert Lattices , 2006 .
[39] Masanao Ozawa. Quantum set theory: Transfer Principle and De Morgan's Laws , 2021, Ann. Pure Appl. Log..
[40] Schumacher,et al. Noncommuting mixed states cannot be broadcast. , 1995, Physical review letters.
[42] A. Gleason. Measures on the Closed Subspaces of a Hilbert Space , 1957 .
[43] Robert Piziak,et al. Implication connectives in orthomodular lattices , 1975, Notre Dame J. Formal Log..
[44] Benjamin Eva,et al. A BRIDGE BETWEEN Q-WORLDS , 2018, The Review of Symbolic Logic.
[45] Masanao Ozawa. Transfer principle in quantum set theory , 2007, J. Symb. Log..
[46] Mladen Pavicic,et al. Quantum logic and quantum computation , 2008, 0812.3072.
[47] Karl Svozil,et al. Quantum Logic , 1998, Discrete mathematics and theoretical computer science.
[48] Masanao Ozawa,et al. ORTHOMODULAR-VALUED MODELS FOR QUANTUM SET THEORY , 2009, The Review of Symbolic Logic.
[49] Satoko Titani. A Completeness Theorem of Quantum Set Theory , 2009 .
[50] Masanao Ozawa,et al. Quantum Reality and Measurement: A Quantum Logical Approach , 2009, 0911.1147.
[51] Mladen Pavicic,et al. Is Quantum Logic a Logic , 2008, 0812.2698.
[52] Ernst-Walther Stachow. Quantum logical calculi and lattice structures , 1978, J. Philos. Log..
[53] Maria Luisa Dalla Chiara,et al. Quantum logic and physical modalities , 1977, J. Philos. Log..
[54] David E. Roberson,et al. Quantum and non-signalling graph isomorphisms , 2016, J. Comb. Theory B.
[55] P. D. Finch,et al. Quantum logic as an implication algebra , 1970, Bulletin of the Australian Mathematical Society.
[56] Yannis Delmas-Rigoutsos. A Double Deduction System for Quantum Logic Based On Natural Deduction , 1997, J. Philos. Log..
[57] John Yen,et al. Introduction , 2004, CACM.
[58] R. Mayet. Equational bases for some varieties of orthomodular lattices related to states , 1986 .
[59] Hirokazu Nishimura. Sequential Method in Quantum Logic , 1980, J. Symb. Log..
[60] W. Rump. Symmetric Quantum Sets and L-Algebras , 2020, International Mathematics Research Notices.
[61] N. Weaver. Quantum relations , 2010, 1005.0354.
[62] Bas Spitters,et al. A Topos for Algebraic Quantum Theory , 2007, 0709.4364.